Počet záznamů: 1
Impact of dielectric constant of solvent on the formation of transition metal-ammine complexes
- 1.0576277 - ÚOCHB 2025 RIV US eng J - Článek v odborném periodiku
Manna, Debashree - Lo, Rabindranath - Miriyala, Vijay Madhav - Nachtigallová, Dana - Trávníček, Z. - Hobza, Pavel
Impact of dielectric constant of solvent on the formation of transition metal-ammine complexes.
Journal of Computational Chemistry. Roč. 45, č. 4 (2024), s. 204-209. ISSN 0192-8651. E-ISSN 1096-987X
Grant CEP: GA ČR(CZ) GX19-27454X
Institucionální podpora: RVO:61388963
Klíčová slova: ammine complexes * charge transfer * COSMO * dative bond * dielectric constant * solvation energy * transition metals
Obor OECD: Inorganic and nuclear chemistry
Impakt faktor: 3.4, rok: 2023 ; AIS: 0.844, rok: 2023
Způsob publikování: Open access
Web výsledku:
https://doi.org/10.1002/jcc.27230DOI: https://doi.org/10.1002/jcc.27230
The DFT-level computational investigations into Gibbs free energies (ΔG) demonstrate that as the dielectric constant of the solvent increases, the stabilities of [M(NH3)n]2+/3+ (n = 4, 6, M = selected 3d transition metals) complexes decrease. However, there is no observed correlation between the stability of the complex and the solvent donor number. Analysis of the charge transfer and Wiberg bond indices indicates a dative-bond character in all the complexes. The solvent effect assessed through solvation energy is determined by the change in the solvent accessible surface area (SASA) and the change in the charge distribution that occurs during complex formation. It has been observed that the SASA and charge transfer are different in the different coordination numbers, resulting in a variation in the solvent effect on complex stability in different solvents. This ultimately leads to a change between the relative stability of complexes with different coordination numbers while increasing the solvent polarity for a few complexes. Moreover, the findings indicate a direct relationship between ΔΔG (∆Gsolvent-∆Ggas) and ΔEsolv, which enables the computation of ΔG for the compounds in a particular solvent using only ΔGgas and ΔEsolv. This approach is less computationally expensive.
Trvalý link: https://hdl.handle.net/11104/0345838
Počet záznamů: 1