Počet záznamů: 1  

Deep learning model of hiss waves in the plasmasphere and plumes and their effects on radiation belt electrons

  1. 1.
    0575968 - ÚFA 2024 RIV CH eng J - Článek v odborném periodiku
    Huang, S. - Li, W. - Ma, Q. - Shen, X.-C. - Capannolo, L. - Hanzelka, Miroslav - Chu, X. - Ma, D. - Bortnik, J. - Wing, S.
    Deep learning model of hiss waves in the plasmasphere and plumes and their effects on radiation belt electrons.
    Frontiers in Astronomy and Space Sciences. Roč. 10, Aug. (2023), č. článku 1231578. ISSN 2296-987X. E-ISSN 2296-987X
    Institucionální podpora: RVO:68378289
    Klíčová slova: total electron density * hiss * plasmasphere * plume * deep learning * radiation belt electrons * fokker planck simulation
    Obor OECD: Fluids and plasma physics (including surface physics)
    Impakt faktor: 2.6, rok: 2023 ; AIS: 1.056, rok: 2023
    Způsob publikování: Open access
    Web výsledku:
    https://www.frontiersin.org/articles/10.3389/fspas.2023.1231578/fullDOI: https://doi.org/10.3389/fspas.2023.1231578

    Hiss waves play an important role in removing energetic electrons from Earth's radiation belts by precipitating them into the upper atmosphere. Compared to plasmaspheric hiss that has been studied extensively, the evolution and effects of plume hiss are less understood due to the challenge of obtaining their global observations at high cadence. In this study, we use a neural network approach to model the global evolution of both the total electron density and the hiss wave amplitudes in the plasmasphere and plume. After describing the model development, we apply the model to a storm event that occurred on 14 May 2019 and find that the hiss wave amplitude first increased at dawn and then shifted towards dusk, where it was further excited within a narrow region of high density, namely, a plasmaspheric plume. During the recovery phase of the storm, the plume rotated and wrapped around Earth, while the hiss wave amplitude decayed quickly over the nightside. Moreover, we simulated the overall energetic electron evolution during this storm event, and the simulated flux decay rate agrees well with the observations. By separating the modeled plasmaspheric and plume hiss waves, we quantified the effect of plume hiss on energetic electron dynamics. Our simulation demonstrates that, under relatively quiet geomagnetic conditions, the region with plume hiss can vary from L = 4 to 6 and can account for up to an 80% decrease in electron fluxes at hundreds of keV at L > 4 over 3 days. This study highlights the importance of including the dynamic hiss distribution in future simulations of radiation belt electron dynamics.
    Trvalý link: https://hdl.handle.net/11104/0345672


     
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0575968_Frontiers in Astronomy_Hanzelka_2023.pdf22.7 MBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.