Počet záznamů: 1  

Scdrake: a reproducible and scalable pipeline for scRNA-seq data analysis

  1. 1.
    0574419 - ÚMG 2024 RIV GB eng J - Článek v odborném periodiku
    Kubovčiak, Jan - Kolář, Michal - Novotný, Jiří
    Scdrake: a reproducible and scalable pipeline for scRNA-seq data analysis.
    Bioinformatics Advances. Roč. 3, č. 1 (2023), č. článku vbad089. E-ISSN 2635-0041
    Grant CEP: GA MŠMT(CZ) LM2018131; GA MŠMT(CZ) EF16_019/0000785; GA MŠMT LX22NPO5102
    Institucionální podpora: RVO:68378050
    Klíčová slova: scRNA-seq data analysis * scdrake * R language
    Obor OECD: Biochemistry and molecular biology
    Impakt faktor: 2.4, rok: 2023
    Způsob publikování: Open access
    Web výsledku:
    https://academic.oup.com/bioinformaticsadvances/article/3/1/vbad089/7220500?login=trueDOI: https://doi.org/10.1093/bioadv/vbad089

    Motivation: While the workflow for primary analysis of single-cell RNA-seq (scRNA-seq) data is well established, the secondary analysis of the feature-barcode matrix is usually done by custom scripts. There is no fully automated pipeline in the R statistical environment, which would follow the current best programming practices and requirements for reproducibility. Results: We have developed scdrake, a fully automated workflow for secondary analysis of scRNA-seq data, which is fully implemented in the R language and built within the drake framework. The pipeline includes quality control, cell and gene filtering, normalization, detection of highly variable genes, dimensionality reduction, clustering, cell type annotation, detection of marker genes, differential expression analysis and integration of multiple samples. The pipeline is reproducible and scalable, has an efficient execution, provides easy extendability and access to intermediate results and outputs rich HTML reports. Scdrake is distributed as a Docker image, which provides a straightforward setup and enhances reproducibility.
    Trvalý link: https://hdl.handle.net/11104/0344748
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    bioinformatics adv.-kubovciak-2023.pdf0384.7 KBVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.