- Structural connectivity-based predictors of cognitive impairment in s…
Počet záznamů: 1  

Structural connectivity-based predictors of cognitive impairment in stroke patients attributable to aging

  1. 1.
    SYSNO ASEP0572336
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevStructural connectivity-based predictors of cognitive impairment in stroke patients attributable to aging
    Tvůrce(i) Rehák Bučková, Barbora (UIVT-O) RID, ORCID, SAI
    Kala, David (FGU-C) ORCID, RID
    Kořenek, Jakub (UIVT-O) ORCID, RID, SAI
    Matušková, V. (CZ)
    Kumpošt, Vojtěch (FGU-C) ORCID
    Svobodová, L. (CZ)
    Otáhal, Jakub (FGU-C) RID, ORCID, SAI
    Škoch, A. (CZ)
    Šulc, V. (CZ)
    Olšerová, A. (CZ)
    Vyhnálek, M. (CZ)
    Janský, P. (CZ)
    Tomek, A. (CZ)
    Marusič, P. (CZ)
    Jiruška, P. (CZ)
    Hlinka, Jaroslav (UIVT-O) RID, SAI, ORCID
    Číslo článkue0280892
    Zdroj.dok.PLoS ONE. - : Public Library of Science - ISSN 1932-6203
    Roč. 18, č. 4 (2023)
    Poč.str.18 s.
    Forma vydáníOnline - E
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaStroke ; Aging ; Structural connectivity ; Diffusion Magnetic Resonance Imaging ; White matter ; Cognitive Dysfunction ; Tract-Based Spatial Statistics ; Graph Theory ; Tractography
    Obor OECDNeurosciences (including psychophysiology
    CEPNV17-28427A GA MZd - Ministerstvo zdravotnictví
    Způsob publikováníOpen access
    Institucionální podporaUIVT-O - RVO:67985807 ; FGU-C - RVO:67985823
    UT WOS001017121000011
    EID SCOPUS85152630346
    DOI https://doi.org/10.1371/journal.pone.0280892
    AnotaceDespite the rising global burden of stroke and its socio-economic implications, the neuroimaging predictors of subsequent cognitive impairment are still poorly understood. We address this issue by studying the relationship of white matter integrity assessed within ten days after stroke and patients' cognitive status one year after the attack. Using diffusion-weighted imaging, we apply the Tract-Based Spatial Statistics analysis and construct individual structural connectivity matrices by employing deterministic tractography. We further quantify the graph-theoretical properties of individual networks. The Tract-Based Spatial Statistic did identify lower fractional anisotropy as a predictor of cognitive status, although this effect was mostly attributable to the age-related white matter integrity decline. We further observed the effect of age propagating into other levels of analysis. Specifically, in the structural connectivity approach we identified pairs of regions significantly correlated with clinical scales, namely memory, attention, and visuospatial functions. However, none of them persisted after the age correction. Finally, the graph-theoretical measures appeared to be more robust towards the effect of age, but still were not sensitive enough to capture a relationship with clinical scales. In conclusion, the effect of age is a dominant confounder especially in older cohorts, and unless appropriately addressed, may falsely drive the results of the predictive modelling.
    PracovištěÚstav informatiky
    KontaktTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Rok sběru2024
    Elektronická adresahttps://dx.doi.org/10.1371/journal.pone.0280892
Počet záznamů: 1  

Metadata v repozitáři ASEP jsou licencována pod licencí CC0.

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.