- Qualitative properties of different numerical methods for the inhomog…
Počet záznamů: 1  

Qualitative properties of different numerical methods for the inhomogeneous geometric Brownian motion

  1. 1.
    SYSNO ASEP0557426
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevQualitative properties of different numerical methods for the inhomogeneous geometric Brownian motion
    Tvůrce(i) Tubikanec, I. (AT)
    Tamborrino, M. (GB)
    Lánský, Petr (FGU-C) RID, ORCID
    Buckwar, E. (AT)
    Celkový počet autorů4
    Číslo článku113951
    Zdroj.dok.Journal of Computational and Applied Mathematics. - : Elsevier - ISSN 0377-0427
    Roč. 406, May 1 (2022)
    Poč.str.29 s.
    Jazyk dok.eng - angličtina
    Země vyd.NL - Nizozemsko
    Klíč. slovaGARCH model ; Feller's boundary classification ; numerical splitting schemes ; log-ODE method ; boundary preservation ; moment preservation
    Obor OECDStatistics and probability
    CEPGF20-21030L GA ČR - Grantová agentura ČR
    Způsob publikováníOpen access
    Institucionální podporaFGU-C - RVO:67985823
    UT WOS000789740200019
    EID SCOPUS85121879507
    DOI https://doi.org/10.1016/j.cam.2021.113951
    AnotaceWe provide a comparative analysis of qualitative features of different numerical methods for the inhomogeneous geometric Brownian motion (IGBM). The limit distribution of the IGBM exists, its conditional and asymptotic mean and variance are known and the process can be characterised according to Feller's boundary classification. We compare the frequently used Euler-Maruyama and Milstein methods, two Lie-Trotter and two Strang splitting schemes and two methods based on the ordinary differential equation (ODE) approach, namely the classical Wong-Zakai approximation and the recently proposed log-ODE scheme. First, we prove that, in contrast to the Euler-Maruyama and Milstein schemes, the splitting and ODE schemes preserve the boundary properties of the process, independently of the choice of the time discretisation step. Second, we prove that the limit distribution of the splitting and ODE methods exists for all stepsize values and parameters. Third, we derive closed-form expressions for the conditional and asymptotic means and variances of all considered schemes and analyse the resulting biases. While the Euler-Maruyama and Milstein schemes are the only methods which may have an asymptotically unbiased mean, the splitting and ODE schemes perform better in terms of variance preservation. The Strang schemes outperform the Lie-Trotter splittings, and the log-ODE scheme the classical ODE method. The mean and variance biases of the log-ODE scheme are very small for many relevant parameter settings. However, in some situations the two derived Strang splittings may be a better alternative, one of them requiring considerably less computational effort than the log-ODE method. The proposed analysis may be carried out in a similar fashion on other numerical methods and stochastic differential equations with comparable features.
    PracovištěFyziologický ústav
    KontaktLucie Trajhanová, lucie.trajhanova@fgu.cas.cz, Tel.: 241 062 400
    Rok sběru2023
    Elektronická adresahttps://doi.org/10.1016/j.cam.2021.113951
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.