Počet záznamů: 1
Transferless Inverted graphene/silicon heterostructures prepared by plasma-enhanced chemical vapor deposition of amorphous silicon on CVD graphene
- 1.0531897 - FZÚ 2021 RIV CH eng J - Článek v odborném periodiku
Müller, Martin - Bouša, Milan - Hájková, Zdeňka - Ledinský, Martin - Fejfar, Antonín - Drogowska-Horna, Karolina A. - Kalbáč, Martin - Frank, Otakar
Transferless Inverted graphene/silicon heterostructures prepared by plasma-enhanced chemical vapor deposition of amorphous silicon on CVD graphene.
Nanomaterials. Roč. 10, č. 3 (2020), s. 1-10, č. článku 589. ISSN 2079-4991. E-ISSN 2079-4991
Grant CEP: GA MŠMT EF16_026/0008382; GA ČR(CZ) GA17-18702S; GA MŠMT(CZ) EF16_013/0001821; GA MŠMT LM2018110
Grant ostatní: OP VVV - CARAT CZ.02.1.01/0.0/0.0/16_026/0008382
Institucionální podpora: RVO:68378271 ; RVO:61388955
Klíčová slova: silicon * graphene * heterostructure * CDV
Obor OECD: Condensed matter physics (including formerly solid state physics, supercond.); Physical chemistry (UFCH-W)
Impakt faktor: 5.076, rok: 2020 ; AIS: 0.756, rok: 2020
Způsob publikování: Open access
DOI: https://doi.org/10.3390/nano10030589
The heterostructures of two-dimensional (2D) and three-dimensional (3D) materials represent one of the focal points of current nanotechnology research and development. From an application perspective, the possibility of a direct integration of active 2D layers with exceptional optoelectronic and mechanical properties into the existing semiconductor manufacturing processes is extremely appealing. However, for this purpose, 2D materials should ideally be grown directly on 3D substrates to avoid the transferring step, which induces damage and contamination of the 2D layer. Alternatively, when such an approach is difficult-as is the case of graphene on noncatalytic substrates such as Si-inverted structures can be created, where the 3D material is deposited onto the 2D substrate. In the present work, we investigated the possibility of using plasma-enhanced chemical vapor deposition (PECVD) to deposit amorphous hydrogenated Si (a-Si:H) onto graphene resting on a catalytic copper foil. The resulting stacks created at different Si deposition temperatures were investigated by the combination of Raman spectroscopy (to quantify the damage and to estimate the change in resistivity of graphene), temperature-dependent dark conductivity, and constant photocurrent measurements (to monitor the changes in the electronic properties of a-Si:H). The results indicate that the optimum is 100 degrees C deposition temperature, where the graphene still retains most of its properties and the a-Si:H layer presents high-quality, device-ready characteristics.
Trvalý link: http://hdl.handle.net/11104/0310529
Název souboru Staženo Velikost Komentář Verze Přístup 0531897.pdf 1 1.9 MB CC licence Vydavatelský postprint povolen
Počet záznamů: 1