Počet záznamů: 1  

A Logical Characteristic of Read-Once Branching Programs

  1. 1.
    SYSNO ASEP0506562
    Druh ASEPV - Výzkumná zpráva
    Zařazení RIVZáznam nebyl označen do RIV
    NázevA Logical Characteristic of Read-Once Branching Programs
    Tvůrce(i) Žák, Stanislav (UIVT-O) SAI, RID
    Vyd. údajePrague: ICS CAS, 2019
    EdiceTechnical Report
    Č. sv. ediceV-1270
    Poč.str.16 s.
    Jazyk dok.eng - angličtina
    Země vyd.CZ - Česká republika
    Klíč. slovabranching programs ; computational complexity ; logic
    Vědní obor RIVIN - Informatika
    Obor OECDComputer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    Institucionální podporaUIVT-O - RVO:67985807
    AnotaceWe present a mathematical model of the intuitive notions such as the knowledge or the information arising at different stages of computations on branching programs (b.p.). The model has two appropriate properties: i) The ”knowledge” arising at a stage of computation in question is derivable from the ”knowledge” arising at the previous stage according to the rules of the model and according to the local arrangement of the b.p. ii) The model confirms the intuitively well-known fact that the knowledge arising at a node of a computation depends not only on it but in some cases also on a ”mystery” information. (I. e. different computations reaching the same node may have different knowledge(s) arisen at it.) We prove that with respect to our model no such information exists in read-once b.p.‘s but on the other hand in b. p.‘s which are not read-once such information must be present. The read-once property forms a frontier. More concretely, we may see the instances of our models as a systems S = (U,D) where U is a universe of knowledge and D are derivation rules. We say that a b.p. P is compatible with a system S iff along each computation in P S derives F (false) or T (true) at the end correctly according to the label of the reached sink. This key notion modifies the classic paradigm which takes the computational complexity with respect to different classes of restricted b.p.‘s (e.g. read-once b.p.‘s, k-b.p.‘s, b.p.‘s computing in limited time etc.). Now, the restriction is defined by a subset of systems and only these programs are taken into account which are compatible with at least one of the chosen systems. Further we understand the sets U of knowledge(s) as a sets of admissible logical formulae. It is clear that more rich sets U‘s imply the large restrictions on b.p.‘s and consequently the smaller complexities of Boolean functions are detected. More rich logical equipment implies stronger computational effectiveness. Another question arises: given a set of Boolean functions (e.g. codes of some graphs) what logical equipment is optimal from the point of complexity?
    PracovištěÚstav informatiky
    KontaktTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Rok sběru2020
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.