- Linked by Dynamics: Wavelet-Based Mutual Information Rate as a Connec…
Počet záznamů: 1  

Linked by Dynamics: Wavelet-Based Mutual Information Rate as a Connectivity Measure and Scale-Specific Networks

  1. 1.
    SYSNO ASEP0484478
    Druh ASEPC - Konferenční příspěvek (mezinárodní konf.)
    Zařazení RIVO - Ostatní
    NázevLinked by Dynamics: Wavelet-Based Mutual Information Rate as a Connectivity Measure and Scale-Specific Networks
    Tvůrce(i) Paluš, Milan (UIVT-O) RID, SAI, ORCID
    Zdroj.dok.Advances in Nonlinear Geosciences. - Cham : Springer, 2018 / Tsonis A.A. - ISBN 978-3-319-58894-0
    Rozsah strans. 427-463
    Poč.str.37 s.
    Forma vydáníTištěná - P
    Akce30 Years of Nonlinear Dynamics
    Datum konání03.07.2016 - 08.07.2016
    Místo konáníRhodes
    ZeměGR - Řecko
    Typ akceWRD
    Jazyk dok.eng - angličtina
    Země vyd.CH - Švýcarsko
    Klíč. slovacomplex networks ; dynamical systems ; entropy rate ; mutual information rate ; wavelet transform ; climate networks ; scale-specific networks
    Vědní obor RIVIN - Informatika
    Obor OECDComputer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    CEPLH14001 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    GCP103/11/J068 GA ČR - Grantová agentura ČR
    Institucionální podporaUIVT-O - RVO:67985807
    DOI https://doi.org/10.1007/978-3-319-58895-7_21
    AnotaceZÁKLADNÍ ÚDAJE: In: Advances in Nonlinear Geosciences. Cham: Springer, 2018 - (Tsonis, A.), s. 427-463. Aegean Conferences. ISBN 978-3-319-58894-0. [30 Years of Nonlinear Dynamics. Rhodes (GR), 03.07.2016-08.07.2016]. PODPORA: GA MŠk LH14001, GA ČR GCP103/11/J068. ANOTACE: Experimentally observed networks of interacting dynamical systems are inferred from recorded multivariate time series by evaluating a statistical measure of dependence, usually the cross-correlation coefficient, or mutual information. These measures reflect dependence in static probability distributions, generated by systems’ evolution, rather than coherence of systems’ dynamics. Moreover, these „static” measures of dependence can be biased due to properties of dynamics underlying the analyzed time series. Consequently, properties of local dynamics can be misinterpreted as properties of connectivity or long-range interactions. We propose the mutual information rate as a measure reflecting coherence or synchronization of dynamics of two systems and not suffering by the bias typical for the „static” measures. We demonstrate that a computationally accessible estimation method, derived for Gaussian processes and adapted by using the wavelet transform, can be effective for nonlinear, nonstationary, and multiscale processes. The discussed problem and the proposed method are illustrated using numerically generated data of coupled dynamical systems as well as gridded reanalysis data of surface air temperature as the source for the construction of climate networks. In particular, scale-specific climate networks are introduced.
    PracovištěÚstav informatiky
    KontaktTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Rok sběru2019
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.