- Approximation of Unknown Multivariate Probability Distributions by Us…
Počet záznamů: 1  

Approximation of Unknown Multivariate Probability Distributions by Using Mixtures of Product Components: A Tutorial

  1. 1.
    SYSNO ASEP0475182
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevApproximation of Unknown Multivariate Probability Distributions by Using Mixtures of Product Components: A Tutorial
    Tvůrce(i) Grim, Jiří (UTIA-B) RID, ORCID
    Celkový počet autorů1
    Číslo článku1750028
    Zdroj.dok.International Journal of Pattern Recognition and Artificial Intelligence - ISSN 0218-0014
    Roč. 31, č. 9 (2017)
    Poč.str.37 s.
    Forma vydáníOnline - E
    Jazyk dok.eng - angličtina
    Země vyd.GB - Velká Británie
    Klíč. slovamultivariate statistics ; product mixtures ; naive Bayes models ; EM algorithm ; pattern recognition ; neural networks ; expert systems ; image analysis
    Vědní obor RIVIN - Informatika
    Obor OECDComputer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    CEPGA17-18407S GA ČR - Grantová agentura ČR
    Institucionální podporaUTIA-B - RVO:67985556
    UT WOS000402745500001
    EID SCOPUS85016474470
    DOI https://doi.org/10.1142/S0218001417500288
    AnotaceIn literature the references to EM estimation of product mixtures are not very frequent. The simplifying assumption of product components, e.g. diagonal covariance matrices in case of Gaussian mixtures, is usually considered only as a compromise because of some computational constraints or limited data set. We have found that the product mixtures are rarely used intentionally as a preferable approximating tool. Probably, most practitioners do not „trust“ the product components because of their formal similarity to „naive Bayes models“. Another reason could be an unrecognized numerical instability of EM algorithm in multidimensional spaces. In this paper we recall that the product mixture model does not imply the assumption of independence of variables. It is even not restrictive if the number of components is large enough. In addition, the product components increase numerical stability of the standard EM algorithm, simplify the EM iterations and have some other important advantages. We discuss and explain the implementation details of EM algorithm and summarize our experience in estimating product mixtures. Finally we illustrate the wide applicability of product mixtures in pattern recognition and in other fields.
    PracovištěÚstav teorie informace a automatizace
    KontaktMarkéta Votavová, votavova@utia.cas.cz, Tel.: 266 052 201.
    Rok sběru2018
Počet záznamů: 1  

Metadata v repozitáři ASEP jsou licencována pod licencí CC0.

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.