Počet záznamů: 1  

The Approximate Loebl-Komlos-Sos Conjecture III: The Finer Structure of LKS Graphs

  1. 1.
    0474830 - ÚI 2018 RIV US eng J - Článek v odborném periodiku
    Hladký, J. - Komlós, J. - Piguet, Diana - Simonovits, M. - Stein, M. - Szemerédi, E.
    The Approximate Loebl-Komlos-Sos Conjecture III: The Finer Structure of LKS Graphs.
    SIAM Journal on Discrete Mathematics. Roč. 31, č. 2 (2017), s. 1017-1071. ISSN 0895-4801. E-ISSN 1095-7146
    Grant CEP: GA MŠMT(CZ) 1M0545; GA ČR GJ16-07822Y
    Grant ostatní: EPRSC(GB) EP/D063191/1; EPRSC(GB) EP/J501414/1; FP7(XE) PIEF-GA-2009-253925; GA MŠK(CZ) CZ.1.05/1.1.00/02.0090
    Institucionální podpora: RVO:67985807
    Klíčová slova: extremal graph theory * Loebl–Komlós–Sós conjecture * regularity lemma
    Obor OECD: Pure mathematics
    Impakt faktor: 0.717, rok: 2017 ; AIS: 0.925, rok: 2017
    DOI: https://doi.org/10.1137/140982866

    This is the third of a series of four papers in which we prove the following relaxation of the Loebl--Komlós--Sós conjecture: For every $\alpha>0$ there exists a number $k_0$ such that for every $k>k_0$, every $n$-vertex graph $G$ with at least $(\frac12+\alpha)n$ vertices of degree at least $(1+\alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first paper of the series, we gave a decomposition of the graph $G$ into several parts of different characteristics. In the second paper, we found a combinatorial structure inside the decomposition. In this paper, we will give a refinement of this structure. In the fourth paper, the refined structure will be used for embedding the tree $T$.

    Trvalý link: http://hdl.handle.net/11104/0271779


     
     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.