Počet záznamů: 1  

Generating Models of a Matched Formula with a Polynomial Delay

  1. 1.
    0450591 - ÚI 2017 RIV US eng J - Článek v odborném periodiku
    Savický, Petr - Kučera, P.
    Generating Models of a Matched Formula with a Polynomial Delay.
    Journal of Artificial Intelligence Research. Roč. 56, č. 6 (2016), s. 379-402. ISSN 1076-9757. E-ISSN 1943-5037
    Grant CEP: GA ČR GBP202/12/G061
    Grant ostatní: GA ČR(CZ) GA15-15511S
    Institucionální podpora: RVO:67985807
    Klíčová slova: conjunctive normal form * matched formula * pure literal satisfiable formula
    Kód oboru RIV: BA - Obecná matematika
    Impakt faktor: 2.284, rok: 2016
    DOI: https://doi.org/10.1613/jair.4989

    A matched formula is a CNF formula, such that the system of the sets of the variables, which appear in individual clauses, has a system of distinct representatives. Such a formula is always satisfiable. Matched formulas are used, for example, in the area of parametrized complexity. We prove that the problem of counting the number of the models (satisfying assignments) of a matched formula is #P-complete. On the other hand, we define a class of formulas generalizing the matched formulas and prove that for a formula in this class, one can choose in polynomial time a variable suitable for splitting the tree for the search of the models of the formula. As a consequence, the models of a formula from this class, in particular of any matched formula, can be generated sequentially with a delay polynomial in the size of the input. On the other hand, we prove that this task cannot be performed efficiently for the linearly satisfiable formulas, which is a generalization of matched formulas containing the class considered above.

    Trvalý link: http://hdl.handle.net/11104/0251864

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    a0450591.pdf7237 KBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.