- Asymptotic behavior of increasing solutions to a system of n nonlinea…
Počet záznamů: 1  

Asymptotic behavior of increasing solutions to a system of n nonlinear differential equations

  1. 1.
    SYSNO ASEP0385126
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevAsymptotic behavior of increasing solutions to a system of n nonlinear differential equations
    Tvůrce(i) Řehák, Pavel (MU-W) RID, SAI, ORCID
    Zdroj.dok.Nonlinear Analysis: Theory, Methods & Applications. - : Elsevier - ISSN 0362-546X
    Roč. 77, January 12 (2013), s. 45-58
    Poč.str.14 s.
    Jazyk dok.eng - angličtina
    Země vyd.GB - Velká Británie
    Klíč. slovaoncreasing solution ; asymptotic formula ; quasilinear system
    Vědní obor RIVBA - Obecná matematika
    Institucionální podporaMU-W - RVO:67985840
    UT WOS000310502900003
    EID SCOPUS84867900963
    DOI https://doi.org/10.1016/j.na.2012.08.019
    AnotaceWe consider the system x(i)' = a(i)(t)vertical bar x(i+1)vertical bar(alpha i)sgn x(i+1), i = 1, ... , n, n = 2, where ai, i = 1,..., n, are positive continuous functions on [a, infinity), alpha(i) is an element of (0, infinity), i = 1,..., n, with alpha(1) ... alpha(n) < 1, and x(n+1) means x(1). We analyze the asymptotic behavior of the solutions to this system whose components are eventually positive increasing. In particular, we derive exact asymptotic formulas for the extreme case, where all the solution components tend to infinity (the so-called strongly increasing solutions). We offer two approaches: one is based on the asymptotic equivalence theorem, and the other utilizes the theory of regular variation. The above-mentioned system includes, as special cases, two-term nonlinear scalar differential equations of arbitrary order n and systems of n/2 second-order nonlinear equations (provided n is even), which are related to elliptic partial differential systems.
    PracovištěMatematický ústav
    KontaktJarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757
    Rok sběru2013
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.