Počet záznamů: 1
The rate of convergence in the method of alternating projections
- 1.0380719 - MÚ 2013 RIV US eng J - Článek v odborném periodiku
Badea, C. - Grivaux, S. - Müller, Vladimír
The rate of convergence in the method of alternating projections.
St Petersburg Mathematical Journal. Roč. 23, č. 3 (2012), s. 413-434. ISSN 1061-0022. E-ISSN 1547-7371
Grant CEP: GA ČR GA201/09/0473; GA AV ČR IAA100190903
Institucionální podpora: RVO:67985840
Klíčová slova: Friedrichs angle * method of alternating projections * arbitrarily slow convergence
Kód oboru RIV: BA - Obecná matematika
Impakt faktor: 0.460, rok: 2012
Web výsledku:
http://www.ams.org/journals/spmj/2012-23-03/S1061-0022-2012-01202-1/home.html
DOI: https://doi.org/10.1090/S1061-0022-2012-01202-1
The cosine of the Friedrichs angle between two subspaces is generalized to a parameter associated with several closed subspaces of a Hilbert space. This parameter is employed to analyze the rate of convergence in the von Neumann Halperin method of cyclic alternating projections. General dichotomy theorems are proved, in the Hilbert or Banach space situation, providing conditions under which the alternative QUC/ASC (quick uniform convergence versus arbitrarily slow convergence) holds. Several meanings for ASC are proposed.
Trvalý link: http://hdl.handle.net/11104/0211356
Název souboru Staženo Velikost Komentář Verze Přístup Muller1.pdf 1 331.8 KB Vydavatelský postprint vyžádat
Počet záznamů: 1