Počet záznamů: 1
A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions
- 1.0376831 - MÚ 2013 RIV CZ eng J - Článek v odborném periodiku
Baltaev, J.I. - Kučera, Milan - Väth, Martin
A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions.
Applications of Mathematics. Roč. 57, č. 2 (2012), s. 143-165. ISSN 0862-7940. E-ISSN 1572-9109
Grant CEP: GA AV ČR IAA100190805
Výzkumný záměr: CEZ:AV0Z10190503
Klíčová slova: reaction-diffusion system * unilateral condition * variational inequality
Kód oboru RIV: BA - Obecná matematika
Impakt faktor: 0.222, rok: 2012 ; AIS: 0.4, rok: 2012
Web výsledku:
http://www.springerlink.com/content/e1km86727356pl88/DOI: https://doi.org/10.1007/s10492-012-0010-2
We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way.
Trvalý link: http://hdl.handle.net/11104/0209139
Název souboru Staženo Velikost Komentář Verze Přístup Kučera.pdf 1 240.5 KB Vydavatelský postprint povolen
Počet záznamů: 1