Počet záznamů: 1
Learning from Data as an Inverse Problem
- 1.Kůrková, Věra
Learning from Data as an Inverse Problem.
COMPSTAT Proceedings in Computational Statistics. Heidelberg: Physica-Verlag, 2004 - (Antoch, J.), s. 1377-1384. ISBN 978-3-7908-1554-2.
[COMPSTAT 2004. Symposium /16./. Prague (CZ), 23.08.2004-27.08.2004]
Grant CEP: GA ČR GA201/02/0428
http://hdl.handle.net/11104/0012443
Citováno: 13
--- DE VITO, E. - ROSASCO, L. - CAPONNETTO, A. - DE GIOVANNI, U. - ODONE, F. Learning from examples as an inverse problem. JOURNAL OF MACHINE LEARNING RESEARCH. ISSN 1532-4435, MAY 2005, vol. 6, p. 883-904. [WOS]
--- HLAVACKOVA-SCHINDLER, K. Tikhonov Regularization Parameter in Reproducing Kernel Hilbert Spaces with Respect to the Sensitivity of the Solution. ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I. ISSN 0302-9743, 2008, vol. 5163, p. 215-224. [WOS]
--- NERUDA, R. - VIDNEROVA, P. Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks. 2008 SECOND INTERNATIONAL CONFERENCE ON FUTURE GENERATION COMMUNICATION AND NETWORKING SYMPOSIA, VOLS 1-5, PROCEEDINGS. 2008, p. 360-363. [WOS]
--- ENACHESCU, C. Using prior information to improve the approximation performances of neural networks. Numerical Analysis and Applied Mathematics. ISSN 0094-243X, 2007, vol. 936, p. 170-173. [WOS]
--- DE VITO, E. - ROSASCO, L. - CAPONNETTO, A. - DE GIOVANNINI, U. - ODONE, F. Learning from examples as an inverse problem. JOURNAL OF MACHINE LEARNING RESEARCH. ISSN 1532-4435, MAY 2005, vol. 6, p. 883-904. [WOS]
--- NGUYEN, T.T. Layered Approximation Approach to Knowledge Elicitation in Machine Learning. ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS. ISSN 0302-9743, 2010, vol. 6086, p. 446-455. [WOS]
--- GNECCO, G. - SANGUINETI, M. Regularization Techniques and Suboptimal Solutions to Optimization Problems in Learning from Data. NEURAL COMPUTATION. ISSN 0899-7667, MAR 2010, vol. 22, no. 3, p. 793-829. [WOS]
--- NERUDA, R. - VIDNEROVA, P. Genetic Algorithm with Species for Regularization Network Metalearning. ADVANCES IN INFORMATION TECHNOLOGY. ISSN 1865-0929, 2010, vol. 114, p. 192-201. [WOS]
--- KRUGLOV, I. - MISHULINA, O. - BAKIROV, M. Quantile based decision making rule of the neural networks committee for ill-posed approximation problems. NEUROCOMPUTING. ISSN 0925-2312, NOV 1 2012, vol. 96, SI, p. 74-82. [WOS]
--- VIDNEROVA, P. - NERUDA, R. Evolving Sum and Composite Kernel Functions for Regularization Networks. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT I. ISSN 0302-9743, 2011, vol. 6593, p. 180-189. [WOS]
--- VIDNEROVA, P. - NERUDA, R. Evolutionary Learning of Regularization Networks with Multi-kernel Units. ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I. ISSN 0302-9743, 2011, vol. 6675, p. 538-546. [WOS]
--- GNECCO, G. - SANGUINETI, M. Regularization and Suboptimal Solutions in Learning from Data. INNOVATIONS IN NEURAL INFORMATION PARADIGMS AND APPLICATIONS. ISSN 1860-949X, 2009, vol. 247, p. 113-154. [WOS]
--- KRUGLOV, I.A. - MISHULINA, O.A. Neural network modeling of vector multivariable functions in ill-posed approximation problems. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL. ISSN 1064-2307, JUL 2013, vol. 52, no. 4, p. 503-518. [WOS]
Počet záznamů: 1