Počet záznamů: 1  

Methods for Multidimensional Event Classification: A Case Study using Images from a Cherenkov Gamma-Ray Telescope

  1. 1.
    SYSNO ASEP0103275
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleMethods for Multidimensional Event Classification: A Case Study using Images from a Cherenkov Gamma-Ray Telescope
    TitleMetody vícerozměrné klasifikace událostí: Aplikace na signál z teleskopu pro detekci Čerenkovova gamma záření
    Author(s) Bock, R.K. (DE)
    Chilingarian, A. (RU)
    Gaug, M. (ES)
    Hakl, František (UIVT-O) SAI, RID, ORCID
    Hengstebeck, T. (DE)
    Jiřina, Marcel (UIVT-O) SAI, RID
    Klaschka, Jan (UIVT-O) RID, SAI, ORCID
    Kotrč, Emil (UIVT-O)
    Savický, Petr (UIVT-O) SAI, RID, ORCID
    Towers, S. (US)
    Vaicilius, A. (US)
    Wittek, W. (DE)
    Source TitleNuclear Instruments & Methods in Physics Research Section A. - : Elsevier - ISSN 0168-9002
    Roč. 516, - (2004), s. 511-528
    Number of pages18 s.
    Languageeng - English
    CountryNL - Netherlands
    Keywordsclassification ; discrimination ; multivariate ; neural networks ; kerlen methods ; nearest-neighbour ; regression trees
    Subject RIVBA - General Mathematics
    R&D ProjectsLN00A056 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    GA201/00/1482 GA ČR - Czech Science Foundation (CSF)
    LN00B096 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    UT WOS000188083200026
    EID SCOPUS0346846461
    DOI https://doi.org/10.1016/j.nima.2003.08.157
    AnnotationWe present results from a case study comparing different multivariate classification methods. The input is a set of Monte Carlo data, generated and approximately triggered and pre-processed for an imaging gamma-ray Cherenkov telescope. Such data belong to two classes, originating either from incident gamma rays or caused by hadronic showers. There is only a weak discrimination between signal (gamma) and background (hadrons), making the data an excellent proving ground for classification techniques. The data and methods are described, and a comparison of the results is made. Several methods give results comparable in quality within small fluctuations, suggesting that they perform at or close to the Bayesian limit of achievable separation. Other methods give clearly inferior or inconclusive results. Some problems that this study can not address are also discussed.
    WorkplaceInstitute of Computer Science
    ContactTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Year of Publishing2005
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.