Počet záznamů: 1  

Tree-based solvers for adaptive mesh refinement code FLASH III: a novel scheme for radiation pressure on dust and gas and radiative transfer from diffuse sources

  1. 1.
    SYSNO ASEP0571485
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevTree-based solvers for adaptive mesh refinement code FLASH III: a novel scheme for radiation pressure on dust and gas and radiative transfer from diffuse sources
    Tvůrce(i) Klepitko, A. (DE)
    Walch, S. (DE)
    Wünsch, Richard (ASU-R) RID, ORCID
    Seifried, D. (DE)
    Dinnbier, F. (CZ)
    Haid, S. (DE)
    Celkový počet autorů6
    Zdroj.dok.Monthly Notices of the Royal Astronomical Society. - : Oxford University Press - ISSN 0035-8711
    Roč. 21, č. 1 (2023), s. 160-184
    Poč.str.25 s.
    Forma vydáníOnline - E
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaradiative transfer ; massive stars ; radiative transfer
    Vědní obor RIVBN - Astronomie a nebeská mechanika, astrofyzika
    Obor OECDAstronomy (including astrophysics,space science)
    CEPGA19-15008S GA ČR - Grantová agentura ČR
    Způsob publikováníOmezený přístup
    Institucionální podporaASU-R - RVO:67985815
    UT WOS000951204600002
    EID SCOPUS85160587738
    DOI10.1093/mnras/stad385
    AnotaceRadiation is an important contributor to the energetics of the interstellar medium, yet its transport is difficult to solve numerically. We present a novel approach towards solving radiative transfer of diffuse sources via backwards ray tracing. Here, we focus on the radiative transfer of infrared radiation and the radiation pressure on dust. The new module, TreeRay/RadPressure, is an extension to the novel radiative transfer method TreeRay implemented in the grid-based Magneto-Hydrodynamics code Flash. In TreeRay/RadPressure, every cell and every star particle is a source of infrared radiation. We also describe how gas, dust, and radiation are coupled via a chemical network. This allows us to compute the local dust temperature in thermal equilibrium, leading to a significantly improvement over the classical grey approximation. In several tests, we demonstrate that the scheme produces the correct radiative intensities as well as the correct momentum input by radiation pressure. Subsequently, we apply our new scheme to model massive star formation from a collapsing, turbulent core of 150 M-?. We include the effects of both, ionizing and infrared radiation on the dynamics of the core. We find that the newborn massive star prevents fragmentation in its proximity due to radiative heating. Over time, dust and radiation temperature equalize, while the gas temperature can be either warmer due to shock heating or colder due to insufficient dust-gas coupling. Compared to gravity, the effects of radiation pressure are insignificant for the stellar mass on the simulated time-scale in this work.
    PracovištěAstronomický ústav
    KontaktRadka Svašková, bibl@asu.cas.cz, Tel.: 323 620 326
    Rok sběru2024
    Elektronická adresahttps://doi.org/10.1093/mnras/stad385
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.