Počet záznamů: 1  

Physics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data

  1. 1.
    SYSNO ASEP0570880
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevPhysics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data
    Tvůrce(i) Shamaei, Amirmohammad (UPT-D)
    Starčuková, Jana (UPT-D) RID, SAI, ORCID
    Starčuk jr., Zenon (UPT-D) RID, ORCID, SAI
    Číslo článku106837
    Zdroj.dok.Computers in Biology Medicine. - : Elsevier - ISSN 0010-4825
    Roč. 158, May (2023)
    Poč.str.15 s.
    Forma vydáníTištěná - P
    Jazyk dok.eng - angličtina
    Země vyd.GB - Velká Británie
    Klíč. slovaMR spectroscopy ; Inverse problem ; Deep learning ; Machine learning ; Convolutional neural network ; Metabolite quantification
    Vědní obor RIVIN - Informatika
    Obor OECDComputer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
    CEPEF18_046/0016045 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    LM2018129 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    LM2023050 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    Způsob publikováníOpen access
    Institucionální podporaUPT-D - RVO:68081731
    UT WOS000982004200001
    EID SCOPUS85151756081
    DOI10.1016/j.compbiomed.2023.106837
    AnotacePurpose: While the recommended analysis method for magnetic resonance spectroscopy data is linear combination model (LCM) fitting, the supervised deep learning (DL) approach for quantification of MR spectroscopy (MRS) and MR spectroscopic imaging (MRSI) data recently showed encouraging results, however, supervised learning requires ground truth fitted spectra, which is not practical. Moreover, this work investigates the feasibility and efficiency of the LCM-based self-supervised DL method for the analysis of MRS data. Method: We present a novel DL-based method for the quantification of relative metabolite concentrations, using quantum-mechanics simulated metabolite responses and neural networks. We trained, validated, and evaluated the proposed networks with simulated and publicly accessible in-vivo human brain MRS data and compared the performance with traditional methods. A novel adaptive macromolecule fitting algorithm is included. We investigated the performance of the proposed methods in a Monte Carlo (MC) study. Result: The validation using low-SNR simulated data demonstrated that the proposed methods could perform quantification comparably to other methods. The applicability of the proposed method for the quantification of in-vivo MRS data was demonstrated. Our proposed networks have the potential to reduce computation time significantly. Conclusion: The proposed model-constrained deep neural networks trained in a self-supervised manner can offer fast and efficient quantification of MRS and MRSI data. Our proposed method has the potential to facilitate clinical practice by enabling faster processing of large datasets such as high-resolution MRSI datasets, which may have thousands of spectra.
    PracovištěÚstav přístrojové techniky
    KontaktMartina Šillerová, sillerova@ISIBrno.Cz, Tel.: 541 514 178
    Rok sběru2024
    Elektronická adresahttps://www.sciencedirect.com/science/article/pii/S0010482523003025
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.