Počet záznamů: 1  

Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms

  1. 1.
    SYSNO ASEP0569822
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevDegradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms
    Tvůrce(i) Casas-Luna, M. (CZ)
    Montufar, E. B. (CZ)
    Hort, N. (DE)
    Diaz-de-la-Torre, S. (MX)
    Claudio Mendez-Garcia, J. (MX)
    Vištejnová, L. (CZ)
    Břínek, A. (CZ)
    Daňhel, Aleš (BFU-R) RID, ORCID
    Dvořák, K. (CZ)
    Kaiser, J. (CZ)
    Čelko, L. (CZ)
    Celkový počet autorů11
    Zdroj.dok.Journal of Magnesium and Alloys. - : KeAi Publishing Communications - ISSN 2213-9567
    Roč. 10, č. 12 (2022), s. 3641-3656
    Poč.str.16 s.
    Forma vydáníTištěná - P
    Jazyk dok.eng - angličtina
    Země vyd.CN - Čína
    Klíč. slovaInterpenetrating phase composite ; Biodegradable metal ; Topological relationship ; Direct ink writing ; Metal infiltration ; Computed aided design
    Vědní obor RIVCB - Analytická chemie, separace
    Obor OECDPhysical chemistry
    Způsob publikováníOpen access
    Institucionální podporaBFU-R - RVO:68081707
    UT WOS000911252800025
    EID SCOPUS85138802324
    DOI10.1016/j.jma.2022.07.019
    AnotaceThis work explores ceramic additive manufacturing in combination with liquid metal infiltration for the production of degradable interpenetrating phase magnesium/hydroxyapatite (Mg/HA) composites. Material extrusion additive manufacturing was used to produce stoichiometric, and calcium deficient HA preforms with a well-controlled open pore network, allowing the customization of the topological relationship of the composite. Pure Mg and two different Mg alloys were used to infiltrate the preforms by means of an advanced liquid infiltration method inspired by spark plasma sintering, using a novel die design to avoid the structural collapse of the preform. Complete infiltration was achieved in 8 min, including the time for the Mg melting. The short processing time enabled to restrict the decomposition of HA due to the reducing capacity of liquid Mg. The pure Mg-base composites showed compressive yield strength above pure Mg in cast state. Mg alloy-based composites did not show higher strength than the bare alloys due to grain coarsening, but showed similar mechanical properties than other Mg/HA composites that have significantly higher fraction of metallic phase. The composites showed faster degradation rate under simulated body conditions than the bare metallic component due to the formation of galvanic pairs at microstructural level. Mg dissolved preferentially over HA leaving behind a scaffold after a prolonged degradation period. In turn, the fast production of soluble degradation products caused cell metabolic changes after 24 h of culture with not-diluted material extracts. The topological optimization and reduction of the degradation rate are the topics for future research. (c) 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer review under responsibility of Chongqing University
    PracovištěBiofyzikální ústav
    KontaktJana Poláková, polakova@ibp.cz, Tel.: 541 517 244
    Rok sběru2023
    Elektronická adresahttps://www.sciencedirect.com/science/article/pii/S2213956722001876?via%3Dihub
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.