Počet záznamů: 1  

Thermomechanical fatigue of additively manufactured 316L stainless steel

  1. 1.
    SYSNO ASEP0571964
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevThermomechanical fatigue of additively manufactured 316L stainless steel
    Tvůrce(i) Babinský, Tomáš (UFM-A) ORCID
    Šulák, Ivo (UFM-A) ORCID
    Kuběna, Ivo (UFM-A) RID, ORCID
    Man, Jiří (UFM-A) RID, ORCID
    Weiser, Adam (UFM-A) ORCID
    Švábenská, Eva (UFM-A) ORCID
    Englert, L. (DE)
    Guth, S. (DE)
    Celkový počet autorů8
    Číslo článku144831
    Zdroj.dok.Materials Science and Engineering A Structural Materials Properties Microstructure and Processing. - : Elsevier - ISSN 0921-5093
    Roč. 869, MARCH (2023)
    Poč.str.10 s.
    Jazyk dok.eng - angličtina
    Země vyd.CH - Švýcarsko
    Klíč. slova316l ; Additive manufacturing ; Laser powder bed fusion ; Stainless steel ; Thermomechanical fatigue
    Vědní obor RIVJG - Hutnictví, kovové materiály
    Obor OECDMaterials engineering
    CEPEF18_053/0016933 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    Způsob publikováníOpen access
    Institucionální podporaUFM-A - RVO:68081723
    UT WOS000991346000001
    EID SCOPUS85148684933
    DOI10.1016/j.msea.2023.144831
    AnotaceAn important issue in energy conversion is the performance of materials under complex cyclic loading in a variable temperature field. The present study addresses a new field of research – thermomechanical fatigue of additively manufactured metallic materials, which is crucial for understanding the behaviour of this promising material class under real operating conditions. The material of interest – 316L austenitic stainless steel, commonly used for heat exchangers – was manufactured to bars using laser powder bed fusion. Cylindrical specimens with characteristic hierarchical, non-equilibrium cellular microstructure were machined out of the bars. Two orientations corresponding to the inclination of the building direction to the specimen axis were considered: 0° and 90°. The specimens were subjected to thermomechanical fatigue loading under in-phase (maximum tension coincides with maximum temperature) and out-of-phase (maximum compression coincides with maximum temperature) conditions. The cellular dislocation microstructure showed good stability despite gradual coarsening under the combined effect of thermal loading up to 750 °C and severe plastic deformation. Systematic electron microscopy observations further revealed that basic damage mechanisms – either creep or stress-assisted oxide cracking, the prevalence of which depends on thermomechanical loading conditions – correspond to the behaviour of conventional metallic materials. Under in-phase loading, intergranular creep damage is dominant, hence a key factor affecting the lifetime is the number of grain boundaries in the loading direction. Under out-of-phase loading, fatigue damage is dominant, and the lifetime is determined by transgranular propagation of a principal crack. Comparing the two orientations, the inherent microstructural texture was found to be a crucial factor, also determining the number of grain boundaries and cell walls in the loading direction. Hence, tailoring the microstructure for the service relevant loading conditions via additive manufacturing techniques enables to enhance the component performance in the important field of energy conversion.
    PracovištěÚstav fyziky materiálu
    KontaktYvonna Šrámková, sramkova@ipm.cz, Tel.: 532 290 485
    Rok sběru2024
    Elektronická adresahttps://www.sciencedirect.com/science/article/pii/S0921509323002551?via%3Dihub
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.