Počet záznamů: 1  

110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics

  1. 1.
    0571074 - ÚPT 2024 RIV US eng J - Článek v odborném periodiku
    Stibůrek, Miroslav - Ondráčková, Petra - Tučková, Tereza - Turtaev, S. - Šiler, Martin - Pikálek, Tomáš - Jákl, Petr - Gomes, A. D. - Krejčí, Jana - Kolbábková, Petra - Uhlířová, Hana - Čižmár, Tomáš
    110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics.
    Nature Communications. Roč. 14, č. 1 (2023), č. článku 1897. E-ISSN 2041-1723
    Grant CEP: GA MŠMT EF15_003/0000476; GA MŠMT(CZ) EF16_013/0001775
    GRANT EU: European Commission(XE) 101016787 - DEEPER
    Výzkumná infrastruktura: Czech-BioImaging II - 90129
    Institucionální podpora: RVO:68081731 ; RVO:68081707
    Klíčová slova: holographic endoscopy * multi-mode fibre * in vivo * imaging * brain * mouse * calcium imaging * blood flow
    Obor OECD: Optics (including laser optics and quantum optics); 1.7 Other natural sciences (BFU-R)
    Impakt faktor: 16.6, rok: 2022
    Způsob publikování: Open access
    https://www.nature.com/articles/s41467-023-36889-z

    Light-based in-vivo brain imaging relies on light transport over large distances of highly scattering tissues. Scattering gradually reduces imaging contrast and resolution, making it difficult to reach structures at greater depths even with the use of multiphoton techniques. To reach deeper, minimally invasive endo-microscopy techniques have been established. These most commonly exploit graded-index rod lenses and enable a variety of modalities in head-fixed and freely moving animals. A recently proposed alternative is the use of holographic control of light transport through multimode optical fibres promising much less traumatic application and superior imaging performance. We present a 110 μm thin laser-scanning endo-microscope based on this prospect, enabling in-vivo volumetric imaging throughout the whole depth of the mouse brain. The instrument is equipped with multi-wavelength detection and three-dimensional random access options, and it performs at lateral resolution below 1 μm. We showcase various modes of its application through the observations of fluorescently labelled neurones, their processes and blood vessels. Finally, we demonstrate how to exploit the instrument to monitor calcium signalling of neurones and to measure blood flow velocity in individual vessels at high speeds.
    Trvalý link: https://hdl.handle.net/11104/0342381


    Vědecká data: Zenodo, Zenodo
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    2023_Stiburek_NatureCommunications.pdf31.5 MBOA - CC BY 4.0 https://creativecommons.org/licenses/by/4.0/Vydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.