Počet záznamů: 1  

Magnetorheological characterization and electrospinnability of ultrasound-treated polymer solutions containing magnetic nanoparticles

  1. 1.
    0494120 - ÚH 2019 RIV DE eng J - Článek v odborném periodiku
    Peer, Petra - Stěnička, M. - Filip, Petr - Pizúrová, Naděžda - Babayan, V.
    Magnetorheological characterization and electrospinnability of ultrasound-treated polymer solutions containing magnetic nanoparticles.
    Colloid and Polymer Science. Roč. 296, č. 11 (2018), s. 1849-1855. ISSN 0303-402X. E-ISSN 1435-1536
    Grant CEP: GA MŠMT(CZ) EF16_013/0001823
    Grant ostatní: Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504
    Institucionální podpora: RVO:67985874 ; RVO:68081723
    Klíčová slova: magnetorheological efficiency * magnetic nanoparticles * ultrasound treatment * poly(ethylene oxide) solution * electrospun nanofibres
    Obor OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (UFM-A)
    Impakt faktor: 1.906, rok: 2018

    In order to fabricate a magnetic nanofibrous membrane by electrospinning, it is necessary to follow a suitable method for incorporating nanoparticles into a polymer solution. Ultrasound treatment represents a very effective technique for distributing magnetic nanoparticles within polymer solutions. Adverse effects caused by sonication over time on the given nanofibrous membrane (polymer degradation and appearance of defects) were evaluated by using rotational (magneto)rheometry, transmission and scanning electron microscopy, and magnetometry. A magnetorheological approach was selected to estimate the optimal duration of sonication, and findings were experimentally verified. It was concluded that the processed nanofibrous membrane showed promise as an advanced magnetoactive device.
    Trvalý link: http://hdl.handle.net/11104/0288812

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.