Počet záznamů: 1  

Conductive open-cell silicone foam for modulatable damping and impact sensing applications

  1. 1.
    SYSNO ASEP0572549
    Druh ASEPC - Konferenční příspěvek (mezinárodní konf.)
    Zařazení RIVO - Ostatní
    NázevConductive open-cell silicone foam for modulatable damping and impact sensing applications
    Tvůrce(i) Preuer, R. (AT)
    Šleichrt, Jan (UTAM-F) RID, ORCID, SAI
    Kytýř, Daniel (UTAM-F) SAI, RID, ORCID
    Graz, I. (AT)
    Celkový počet autorů4
    Zdroj.dok.Book of Abstracts. 18th Youth Symposium on Experimental Solid Mechanics. - Praha : Institute of Theoretical and Applied Mechanics, 2023 / Kytýř D. ; Doktor T. ; Zlámal P. - ISBN 978-80-86246-66-6
    Rozsah strans. 31-31
    Poč.str.1 s.
    Forma vydáníOnline - E
    AkceYouth Symposium on Experimental Solid Mechanics /18./
    Datum konání11.06.2023 - 14.06.2023
    Místo konáníTelč
    ZeměCZ - Česká republika
    Typ akceEUR
    Jazyk dok.eng - angličtina
    Země vyd.CZ - Česká republika
    Klíč. slovasilicone foam ; conductive properties ; deformation behaviour ; damping
    Obor OECDMaterials engineering
    Institucionální podporaUTAM-F - RVO:68378297
    AnotaceNature has long served as a source of inspiration for the development of new materials, with foam-like structures in fruits such as oranges and pamelos serving as examples of efficient energy dissipation. In this study, we present the synthesis and characterization of a conductive silicone foam for potential impact sensing applications. By blending Sylgard 184 and Carbon Black, we create a highly porous structure capable of dissipating energy and modulating its resistance. To investigate the properties of the foam, we utilized both micro-computer tomography (μCT) and scanning electron microscopy (SEM) imaging techniques. The μCT imaging revealed the intricate pore network of the foam, reminiscent of the complex structure found in natural sponges. SEM imaging allowed for observation of the uniform distribution of Carbon Black particles within the foam, enabling the conductive properties of the foam. The foam’s mechanical behavior was characterized by a compression test under μCT imaging to measure the deformation behavior and changes in the foam’s resistance. Additionally, a ball drop test was conducted to investigate the foam’s damping behavior while simultaneously measuring the impact location by the local change in resistance. Remarkably, our results demonstrate the exceptional damping capabilities of the conductive silicone foam, with the damping ratio modulated by adjusting the degree of compression-induced deformation. This is attributed to the collapse of the foam’s porous structure, resulting in a significant increase in the foam’s contact area. Overall, our study provides valuable insights into the behavior of conductive silicone foams and their potential as an impact sensing material. The use of both CT and SEM imaging techniques allows for a comprehensive understanding of the foam’s properties, which can be optimized for a variety of applications. The foam’s ability to modulate its damping properties by adjusting the degree of deformation provides a promising avenue for future research in the field of materials science and engineering.
    PracovištěÚstav teoretické a aplikované mechaniky
    KontaktKulawiecová Kateřina, kulawiecova@itam.cas.cz, Tel.: 225 443 285
    Rok sběru2024
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.