Počet záznamů: 1  

Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains?

  1. 1.
    SYSNO ASEP0542023
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevMapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains?
    Tvůrce(i) Culka, Martin (UOCHB-X) ORCID
    Kalvoda, Tadeáš (UOCHB-X) ORCID
    Gutten, Ondrej (UOCHB-X) RID, ORCID
    Rulíšek, Lubomír (UOCHB-X) RID, ORCID
    Zdroj.dok.Journal of Physical Chemistry B. - : American Chemical Society - ISSN 1520-6106
    Roč. 125, č. 1 (2021), s. 58-69
    Poč.str.12 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaprotein structure ; quantum chemistry ; energy
    Obor OECDPhysical chemistry
    CEPGA20-08772S GA ČR - Grantová agentura ČR
    Způsob publikováníOmezený přístup
    Institucionální podporaUOCHB-X - RVO:61388963
    UT WOS000661200000007
    EID SCOPUS85099629888
    DOI10.1021/acs.jpcb.0c09251
    AnotaceTo gain more insight into the physicochemical aspects of a protein structure from the first principles, conformational space of all 8000 “capped” tripeptides (i.e., N-Ac-X1X2X3-NH-CH3, where Xi is one of the 20 natural amino acids) was investigated computationally. An enormous dataset (denoted P-CONF_1.6M and containing close to 1 600 000 conformers in total) has been obtained by employing a composite protocol combining density functional theory, semiempirical quantum mechanics (SQM), and state-of-the-art solvation methods with 1000 K molecular dynamics (MD) used to generate initial structures (200 snapshots for each tripeptide). This allowed us to present the first rigorous QM-based glimpse at the vast conformational space spanned by small protein fragments. The same computational procedure was repeated for tripeptide fragments taken from the SCOPe database of three-dimensional protein folds, by restraining them to their geometry in a protein. Such complementary data allowed us to compare the distribution of conformational strain energies of unrestrained tripeptidic fragments “in solvent” with those in existing protein chains. Besides providing a rigorous (ab initio) proof of a few well-known concepts and hypotheses concerning protein structures, such as the distribution of (φ, ψ) angles in Ramachandran plots, we have made several observations that came as a certain surprise: (1) distribution of conformational energies does not significantly differ between the “unbiased/unrestrained” conformers obtained from MD sampling in solvent and the biased conformers, i.e., those of a given tripeptide obtained from protein structures, (2) conformational (strain) energy window up to ∼20 to 25 kcal·mol–1 is readily available to tripeptide fragments within the context of a protein chain, (3) overpopulation in certain regions of Ramachandran plot was observed for the unbiased conformers. Last but not least, the massive dataset of accurate (DFT-D3//COSMO-RS) conformational (free) energies of ∼1.6 M peptide conformers, P-CONF_1.6M, obtained throughout this work may serve as excellent dataset for calibrating and benchmarking of popular force fields.
    PracovištěÚstav organické chemie a biochemie
    Kontaktasep@uochb.cas.cz ; Kateřina Šperková, Tel.: 232 002 584 ; Jana Procházková, Tel.: 220 183 418
    Rok sběru2022
    Elektronická adresahttps://doi.org/10.1021/acs.jpcb.0c09251
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.