Počet záznamů: 1  

On Random Sets Independence and Strong Independence in Evidence Theory

  1. 1.
    0387908 - ÚTIA 2013 RIV DE eng C - Konferenční příspěvek (zahraniční konf.)
    Vejnarová, Jiřina
    On Random Sets Independence and Strong Independence in Evidence Theory.
    Belief Functions: Theory and Applications. Heidelberg: Springer, 2012 - (Denoeux, T.; Masson, M.), s. 247-254. Advances in Intelligent and Soft Computing, 164. ISBN 978-3-642-29460-0. ISSN 1867-5662.
    [2nd International Conference on Belief Functions. Compiegne (FR), 09.05.2012-11.05.2012]
    Grant CEP: GA ČR GAP402/11/0378
    Institucionální podpora: RVO:67985556
    Klíčová slova: evidence theory * independence
    Kód oboru RIV: BA - Obecná matematika
    http://library.utia.cas.cz/separaty/2013/MTR/vejnarova-on random sets independence and strong independence in evidence theory.pdf

    Belief and plausibility functions can be viewed as lower and upper probabilities possessing special properties. Therefore, (conditional) independence concepts from the framework of imprecise probabilities can also be applied to its sub-framework of evidence theory. In this paper we concentrate ourselves on random sets independence, which seems to be a natural concept in evidence theory, and strong independence, one of two principal concepts (together with epistemic independence) in the framework of credal sets. We show that application of trong independence to two bodies of evidence generally leads to a model which is Beyond the framework of evidence theory. Nevertheless, if we add a condition on resulting focal elements, then strong independence reduces to random sets independence. Unfortunately, it is not valid no more for conditional independence.
    Trvalý link: http://hdl.handle.net/11104/0217947

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.