Počet záznamů: 1
Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation
- 1.
SYSNO ASEP 0603460 Document Type J - Journal Article R&D Document Type Journal Article Subsidiary J Článek ve WOS Title Next-Gen Poly(ε-Caprolactone) Scaffolds: Non-Destructive In Vivo Monitoring and Accelerated Biodegradation Author(s) Kolouchová, K. (BE)
Thijssen, Q. (BE)
Groborz, Ondřej (UOCHB-X) ORCID, RID
Van Damme, L. (BE)
Humajová, J. (CZ)
Matouš, P. (CZ)
Quaak, A. (BE)
Duša, M. (CZ)
Kučka, Jan (UMCH-V) RID, ORCID
Šefc, L. (CZ)
Hrubý, Martin (UMCH-V) RID, ORCID
Van Vlierberghe, S. (BE)Article number 2402256 Source Title Advanced Healthcare Materials. - : Wiley - ISSN 2192-2640
Roč. 14, č. 1 (2025)Number of pages 14 s. Language eng - English Country US - United States Keywords computed tomography contrast agent ; implant ; light-based 3D printing ; light-based crosslinking ; photo-crosslinkable polymers ; polyester ; thiol-ene step growth polymerization OECD category Polymer science R&D Projects LM2023053 GA MŠMT - Ministry of Education, Youth and Sports (MEYS) EH22_008/0004607 GA MŠMT - Ministry of Education, Youth and Sports (MEYS) Research Infrastructure Czech-BioImaging III - 90250 - Ústav molekulární genetiky AV ČR, v. v. i. Method of publishing Open access Institutional support UOCHB-X - RVO:61388963 ; UMCH-V - RVO:61389013 UT WOS 001357888700001 EID SCOPUS 85209780529 DOI https://doi.org/10.1002/adhm.202402256 Annotation Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions. Workplace Institute of Organic Chemistry and Biochemistry Contact asep@uochb.cas.cz ; Kateřina Šperková, Tel.: 232 002 584 ; Jana Procházková, Tel.: 220 183 418 Year of Publishing 2026 Electronic address https://doi.org/10.1002/adhm.202402256
Počet záznamů: 1
