Počet záznamů: 1
A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions
- 1.0458817 - ÚŽFG 2017 RIV CZ eng J - Článek v odborném periodiku
Eisner, Jan - Kučera, Milan - Väth, Martin
A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions.
Applications of Mathematics. Roč. 61, č. 1 (2016), s. 1-25. ISSN 0862-7940. E-ISSN 1572-9109
Grant CEP: GA ČR GA13-12580S
Institucionální podpora: RVO:67985904 ; RVO:67985840
Klíčová slova: reaction-diffusion system * unlateral condition * variational inequality
Kód oboru RIV: EG - Zoologie; BA - Obecná matematika (MU-W)
Impakt faktor: 0.618, rok: 2016 ; AIS: 0.227, rok: 2016
DOI: https://doi.org/10.1007/s10492-016-0119-9
Given a reaction-diffusion system which exhibits Turing's diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the classical case without unilateral obstacles. The study is based on a variational approach to a non-variational problem which even after transformation to a variational one has an unusual structure for which usual variational methods do not apply.
Trvalý link: http://hdl.handle.net/11104/0259052Název souboru Staženo Velikost Komentář Verze Přístup Kucera.pdf 5 254 KB Vydavatelský postprint povolen
Počet záznamů: 1