Počet záznamů: 1  

Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation

  1. 1.
    SYSNO ASEP0518300
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevTubulin response to intense nanosecond-scale electric field in molecular dynamics simulation
    Tvůrce(i) Marracino, P. (IT)
    Havelka, Daniel (URE-Y) RID
    Průša, Jiří (URE-Y)
    Liberti, M. (IT)
    Tuszyński, J.A. (CA)
    Ayoub, A.T. (EG)
    Apollonio, F. (IT)
    Cifra, Michal (URE-Y) RID, ORCID, SAI
    Celkový počet autorů8
    Číslo článku10477
    Zdroj.dok.Scientific Reports. - : Nature Publishing Group - ISSN 2045-2322
    Roč. 9, č. 1 (2019)
    Poč.str.14 s.
    Forma vydáníTištěná - P
    Jazyk dok.eng - angličtina
    Země vyd.GB - Velká Británie
    Klíč. slovaElectric fields ; Molecular dynamics ; Microwave heating
    Vědní obor RIVJA - Elektronika a optoelektronika, elektrotechnika
    Obor OECDElectrical and electronic engineering
    CEPGA17-11898S GA ČR - Grantová agentura ČR
    Způsob publikováníOpen access
    Institucionální podporaURE-Y - RVO:67985882
    UT WOS000476468700005
    EID SCOPUS85069477341
    DOI10.1038/s41598-019-46636-4
    AnotaceIntense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the b beta-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols
    PracovištěÚstav fotoniky a elektroniky
    KontaktPetr Vacek, vacek@ufe.cz, Tel.: 266 773 413, 266 773 438, 266 773 488
    Rok sběru2020
    Elektronická adresahttps://www.nature.com/articles/s41598-019-46636-4.pdf?origin=ppub
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.