Počet záznamů: 1
Minimization of Entropy Functionals Revisited
- 1.0381751 - ÚTIA 2013 RIV US eng C - Konferenční příspěvek (zahraniční konf.)
Imre, C. - Matúš, František
Minimization of Entropy Functionals Revisited.
Proceedings of the IEEE International Symposium on Information Theory Proceedings (ISIT), 2012. Cambridge: IEEE, 2012, s. 150-154. ISBN 978-1-4673-2579-0. ISSN 2157-8095.
[IEEE International Symposium on Information Theory Proceedings (ISIT), 2012. Cambridge (US), 01.07.2012-06.07.2015]
Grant CEP: GA ČR GA201/08/0539; GA ČR GAP202/10/0618
Institucionální podpora: RVO:67985556
Klíčová slova: maximum entropy * moment constraint * primal/dual solutions * normal integrand * convex duality * Bregman projection * generalized exponential family
Kód oboru RIV: BA - Obecná matematika
Web výsledku:
http://library.utia.cas.cz/separaty/2012/MTR/matus-minimization of entropy functionals revisited.pdf
DOI: https://doi.org/10.1109/ISIT.2012.6283516
Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are assumed to be strictly convex but not autonomous or differentiable. The effective domain of the value function is described by a modification of the concept of convex core. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. Main results assume a dual constraint qualification but dispense with the primal constraint qualification. Minimizers and generalized minimizers are explicitly described whenever the primal value is finite. Existence of a generalized dual solution is established whenever the dual value is finite. A generalized Pythagorean identity is presented using Bregman distance and a correction term. Results are applied to minimization of Bregman distances.
Trvalý link: http://hdl.handle.net/11104/0007173
Počet záznamů: 1