Počet záznamů: 1  

Optimizing printability and mechanical properties of poly(3-hydroxybutyrate) biocomposite blends and their biological response to Saos-2 cells

  1. 1.
    SYSNO ASEP0617182
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve SCOPUS
    NázevOptimizing printability and mechanical properties of poly(3-hydroxybutyrate) biocomposite blends and their biological response to Saos-2 cells
    Tvůrce(i) Krobot, Š. (CZ)
    Menčík, P. (CZ)
    Chaloupková, K. (CZ)
    Bočkaj, J. (SK)
    Vach Agócsová, S. (SK)
    Klusáček Rampichová, Michala (UEM-P) RID, ORCID
    Hedvičáková, Věra (UEM-P)
    Alexy, P. (SK)
    Přikryl, R. (CZ)
    Melcová, V. (CZ)
    Celkový počet autorů10
    Zdroj.dok.International Journal of Bioprinting - ISSN 2424-7723
    Roč. 11, č. 1 (2025), s. 400-417
    Poč.str.18 s.
    Jazyk dok.eng - angličtina
    Země vyd.SG - Singapur
    Klíč. slova3D printing ; design of experiment ; fused deposition modeling ; Poly(3-hydroxybutyrate) ; Polylactide ; printability ; scaffold
    Obor OECDBiomaterials (as related to medical implants, devices, sensors)
    CEPEH22_008/0004562 GA MŠMT - Ministerstvo školství, mládeže a tělovýchovy
    Způsob publikováníOpen access
    Institucionální podporaUEM-P - RVO:68378041
    EID SCOPUS85218863490
    DOI https://doi.org/10.36922/ijb.5175
    AnotaceBone tissue engineering requires scaffolds with three-dimensional (3D) structures that facilitate vascularization and new tissue growth. 3D printing, especially through fused deposition modeling (FDM), has emerged as an effective method for creating complex structures with high reproducibility. Early research in this area demonstrated the potential of poly(ε-caprolactone) (PCL) and poly(L-lactide) (PLLA) scaffolds for bone regeneration. Recently, polylactide (PLA) and polyhydroxyalkanoates (PHAs) have garnered attention for their biocompatibility and ability to support cell proliferation. Among PHAs, poly(3-hydroxybutyrate) (PHB) shows promise due to its intrinsic biocompatibility and resorbability, making it a candidate for FDM-based scaffold fabrication. In the presented study, we aim to develop and optimize a biocompatible PHB-based composite material for bone tissue engineering, incorporating PLA, hydroxyapatite, and the plasticizer Syncroflex 3114 to enhance mechanical properties and printability. This composite was processed into filaments for 3D printing and characterized through thermal, mechanical, and biological evaluations. Using a design of experiment approach, we investigated factors such as temperature performance, warping, degradation, and strength to determine the optimal composition for use in tissue engineering. Four optimal mixture compositions fulfilling the optimization criteria of having the most suitable properties for bone tissue engineering, namely the best printability and maximum mechanical properties, were obtained. The mixtures were optimized specifically for minimum warping coefficient (0.5), maximum flexural strength (66.9 MPa), maximum compression modulus (2.4 GPa), and maximum compression modulus (2.3 GPa) with a warping coefficient of no more than 1 at the same time. In conclusion, the study shows a new possible way to effectively develop and test 3D-printed PHB-based scaffolds with specifically optimized material properties.
    PracovištěÚstav experimentální medicíny
    KontaktArzuv Čaryjeva, arzuv.caryjeva@iem.cas.cz, Tel.: 241 062 218, 296 442 218
    Rok sběru2026
    Elektronická adresahttps://accscience.com/journal/IJB/articles/online_first/4158
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.