Počet záznamů: 1  

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  1. 1.
    SYSNO ASEP0543230
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevThrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles
    Tvůrce(i) Bosnar, D. (HR)
    Kozmar, H. (HR)
    Pospíšil, Stanislav (UTAM-F) RID, SAI, ORCID
    Macháček, Michael (UTAM-F) ORCID, SAI, RID
    Celkový počet autorů4
    Zdroj.dok.Wind and Structures. - : Techno-Press - ISSN 1226-6116
    Roč. 32, č. 5 (2021), s. 471-485
    Poč.str.15 s.
    Forma vydáníTištěná - P
    Jazyk dok.eng - angličtina
    Země vyd.KR - Korejská republika
    Klíč. slovawind turbine ; flat terrain ; atmospheric boundary layer ; aerodynamic loads ; wind-tunnel experiments
    Vědní obor RIVJM - Inženýrské stavitelství
    Obor OECDCivil engineering
    Způsob publikováníOmezený přístup
    Institucionální podporaUTAM-F - RVO:68378297
    UT WOS000655324000005
    EID SCOPUS85108151048
    DOI10.12989/was.2021.32.5.471
    AnotaceOnshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e., rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.
    PracovištěÚstav teoretické a aplikované mechaniky
    KontaktKulawiecová Kateřina, kulawiecova@itam.cas.cz, Tel.: 225 443 285
    Rok sběru2022
    Elektronická adresahttp://dx.doi.org/10.12989/was.2021.32.5.471
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.