Počet záznamů: 1
110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics
- 1.0571074 - ÚPT 2024 RIV US eng J - Článek v odborném periodiku
Stibůrek, Miroslav - Ondráčková, Petra - Tučková, Tereza - Turtaev, S. - Šiler, Martin - Pikálek, Tomáš - Jákl, Petr - Gomes, A. D. - Krejčí, Jana - Kolbábková, Petra - Uhlířová, Hana - Čižmár, Tomáš
110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics.
Nature Communications. Roč. 14, č. 1 (2023), č. článku 1897. ISSN 2041-1723. E-ISSN 2041-1723
Grant CEP: GA MŠMT EF15_003/0000476; GA MŠMT(CZ) EF16_013/0001775
GRANT EU: European Commission(XE) 101016787 - DEEPER
Výzkumná infrastruktura: Czech-BioImaging II - 90129
Institucionální podpora: RVO:68081731 ; RVO:68081707
Klíčová slova: holographic endoscopy * multi-mode fibre * in vivo * imaging * brain * mouse * calcium imaging * blood flow
Obor OECD: Optics (including laser optics and quantum optics); 1.7 Other natural sciences (BFU-R)
Impakt faktor: 14.7, rok: 2023 ; AIS: 5.66, rok: 2023
Způsob publikování: Open access
Web výsledku:
https://www.nature.com/articles/s41467-023-36889-zDOI: https://doi.org/10.1038/s41467-023-36889-z
Light-based in-vivo brain imaging relies on light transport over large distances of highly scattering tissues. Scattering gradually reduces imaging contrast and resolution, making it difficult to reach structures at greater depths even with the use of multiphoton techniques. To reach deeper, minimally invasive endo-microscopy techniques have been established. These most commonly exploit graded-index rod lenses and enable a variety of modalities in head-fixed and freely moving animals. A recently proposed alternative is the use of holographic control of light transport through multimode optical fibres promising much less traumatic application and superior imaging performance. We present a 110 μm thin laser-scanning endo-microscope based on this prospect, enabling in-vivo volumetric imaging throughout the whole depth of the mouse brain. The instrument is equipped with multi-wavelength detection and three-dimensional random access options, and it performs at lateral resolution below 1 μm. We showcase various modes of its application through the observations of fluorescently labelled neurones, their processes and blood vessels. Finally, we demonstrate how to exploit the instrument to monitor calcium signalling of neurones and to measure blood flow velocity in individual vessels at high speeds.
Trvalý link: https://hdl.handle.net/11104/0342381
Vědecká data: Zenodo, ZenodoNázev souboru Staženo Velikost Komentář Verze Přístup 2023_Stiburek_NatureCommunications.pdf 4 1.5 MB OA - CC BY 4.0 https://creativecommons.org/licenses/by/4.0/ Vydavatelský postprint povolen
Počet záznamů: 1