Počet záznamů: 1  

Constitution, physical properties and thermodynamic modeling of the Hf-Mn system

  1. 1.
    SYSNO ASEP0579738
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevConstitution, physical properties and thermodynamic modeling of the Hf-Mn system
    Tvůrce(i) Brož, P. (CZ)
    Yan, X. (AT)
    Romaka, V. (AT)
    Fabrichnaya, O. (DE)
    Kriegel, M. J. (DE)
    Buršíková, V. (CZ)
    Buršík, Jiří (UFM-A) RID, ORCID
    Vřešťál, J. (CZ)
    Rogl, G. (AT)
    Michor, H. (AT)
    Bauer, E. (AT)
    Eiberger, M. (AT)
    Grytsiv, A. (AT)
    Giester, G. (AT)
    Rogl, P.F. (AT)
    Celkový počet autorů15
    Číslo článku173060
    Zdroj.dok.Journal of Alloys and Compounds. - : Elsevier - ISSN 0925-8388
    Roč. 976, March (2024)
    Poč.str.17 s.
    Jazyk dok.eng - angličtina
    Země vyd.CH - Švýcarsko
    Klíč. slovaIntermetallics ; Crystal structure ; Laves phase ; Phase diagrams ; Physical properties ; DFT
    Vědní obor RIVBM - Fyzika pevných látek a magnetismus
    Obor OECDCondensed matter physics (including formerly solid state physics, supercond.)
    Způsob publikováníOmezený přístup
    Institucionální podporaUFM-A - RVO:68081723
    UT WOS001142152500001
    EID SCOPUS85180539462
    DOI10.1016/j.jallcom.2023.173060
    AnotaceThe Hf-Mn system is of a long-time interest due to the intermetallic Laves phase HfMn2, a hydrogen storage material. Although this system has been experimentally investigated by several authors and critical reviews and thermodynamic modelling have been performed, there is still a lack of reliable information, particularly as the phase HfMn (sometimes labelled as Hf3Mn2 or Hf2Mn) is suspected to be oxygen stabilized. This work includes a thorough investigation of the Hf-Mn phase equilibria employing diffusion zones, thermal analysis, powder and single crystal X-ray analyses, analytical electron microscopy as well as physical property studies of the Laves phase (magnetic susceptibility, specific heat, electrical resistivity and mechanical properties). The phase near HfMn was shown (TEM, WDX electron microprobe data, X-ray single crystal analysis) to be an oxygen stabilized phase with the formula Hf3+xMn3−xO1−y (defect η-W3Fe3C type). Properties such as magnetic susceptibility/magnetization, 2–300 K, specific heat (2–1100 K), electrical resistivity (2–300 K) classify HfMn2 as a metallic spin-fluctuation system with itinerant paramagnetism, originating from 3d states at Mn-sites and local moment paramagnetism of antisite Mn-atoms at Hf-sites. Mechanical properties (elastic moduli from density functional theory (DFT) and nanoindentation as well as hardness) group the Laves phase among rather hard and brittle intermetallics. DFT modeling revealed that Hf3+xMn3−x is thermodynamically unstable, but significant gains in enthalpy of formation arise from the inclusion of oxygen atoms, stabilizing the η phase. All phase diagram and DFT data together with the former literature information were used for the thermodynamic CALPHAD-type modelling of the Hf-Mn system.
    PracovištěÚstav fyziky materiálu
    KontaktYvonna Šrámková, sramkova@ipm.cz, Tel.: 532 290 485
    Rok sběru2025
    Elektronická adresahttps://www.sciencedirect.com/science/article/pii/S0925838823043633?via%3Dihub
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.