Počet záznamů: 1
Formally integrable complex structures on higher dimensional knot spaces
- 1.0544043 - MÚ 2022 RIV US eng J - Článek v odborném periodiku
Fiorenza, D. - Le, Hong-Van
Formally integrable complex structures on higher dimensional knot spaces.
Journal of Symplectic Geometry. Roč. 19, č. 3 (2021), s. 507-529. ISSN 1527-5256. E-ISSN 1540-2347
Grant CEP: GA ČR(CZ) GA18-00496S
Institucionální podpora: RVO:67985840
Klíčová slova: Riemannian manifold * higher dimensional space * Kähler manifold
Obor OECD: Pure mathematics
Impakt faktor: 0.725, rok: 2021
Způsob publikování: Omezený přístup
Web výsledku:
https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1
DOI: https://doi.org/10.4310/JSG.2021.v19.n3.a1
Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf(S,M) the space of all free immersions φ:S→M and let B+i,f(S,M) the quotient space Immf(S,M)/Diff+(S), where Diff+(S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product χ∈Ωr(M,TM) and dimS=r−1 then B+i,f(S,M) is a formally Kähler manifold. This generalizes Brylinski’s, LeBrun’s and Verbitsky’s results for the case that S is a codimension 2 submanifold in M, and S=S1 or M is a torsion-free G2-manifold respectively.
Trvalý link: http://hdl.handle.net/11104/0321107
Počet záznamů: 1