Počet záznamů: 1  

Formally integrable complex structures on higher dimensional knot spaces

  1. 1.
    0544043 - MÚ 2022 RIV US eng J - Článek v odborném periodiku
    Fiorenza, D. - Le, Hong-Van
    Formally integrable complex structures on higher dimensional knot spaces.
    Journal of Symplectic Geometry. Roč. 19, č. 3 (2021), s. 507-529. ISSN 1527-5256. E-ISSN 1540-2347
    Grant CEP: GA ČR(CZ) GA18-00496S
    Institucionální podpora: RVO:67985840
    Klíčová slova: Riemannian manifold * higher dimensional space * Kähler manifold
    Obor OECD: Pure mathematics
    Impakt faktor: 0.725, rok: 2021
    Způsob publikování: Omezený přístup
    Web výsledku:
    https://dx.doi.org/10.4310/JSG.2021.v19.n3.a1
    DOI: https://doi.org/10.4310/JSG.2021.v19.n3.a1

    Let S be a compact oriented finite dimensional manifold and M a finite dimensional Riemannian manifold, let Immf(S,M) the space of all free immersions φ:S→M and let B+i,f(S,M) the quotient space Immf(S,M)/Diff+(S), where Diff+(S) denotes the group of orientation preserving diffeomorphisms of S. In this paper we prove that if M admits a parallel r-fold vector cross product χ∈Ωr(M,TM) and dimS=r−1 then B+i,f(S,M) is a formally Kähler manifold. This generalizes Brylinski’s, LeBrun’s and Verbitsky’s results for the case that S is a codimension 2 submanifold in M, and S=S1 or M is a torsion-free G2-manifold respectively.

    Trvalý link: http://hdl.handle.net/11104/0321107

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Le2.pdf2220.3 KBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.