Počet záznamů: 1  

Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity

  1. 1.
    SYSNO ASEP0507769
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevChemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity
    Tvůrce(i) Terencio, T. (CZ)
    Andris, E. (CZ)
    Gamba, I. (ES)
    Srnec, Martin (UFCH-W) RID, ORCID
    Costas, M. (ES)
    Roithová, J. (CZ)
    Zdroj.dok.Journal of the American Society for Mass Spectrometry. - : American Chemical Society - ISSN 1044-0305
    Roč. 30, č. 10 (2019), s. 1923-1933
    Poč.str.11 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaC–H activation ; DFT calculations ; Epoxidation ; Gas-phase reactions ; Iron complexes
    Vědní obor RIVCF - Fyzikální chemie a teoretická chemie
    Obor OECDPhysical chemistry
    CEPGA18-13093S GA ČR - Grantová agentura ČR
    Způsob publikováníOmezený přístup
    Institucionální podporaUFCH-W - RVO:61388955
    UT WOS000491555700011
    EID SCOPUS85070377151
    DOI10.1007/s13361-019-02251-1
    AnotaceWe report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.
    PracovištěÚstav fyzikální chemie J.Heyrovského
    KontaktMichaela Knapová, michaela.knapova@jh-inst.cas.cz, Tel.: 266 053 196
    Rok sběru2020
    Elektronická adresahttp://hdl.handle.net/11104/0298739
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.