Počet záznamů: 1
Low-rank improvements of two-level grid preconditioned matrices
- 1.0495392 - ÚGN 2019 RIV NL eng J - Článek v odborném periodiku
Axelsson, Owe - Blaheta, Radim
Low-rank improvements of two-level grid preconditioned matrices.
Journal of Computational and Applied Mathematics. Roč. 340, č. 1 (2018), s. 432-442. ISSN 0377-0427. E-ISSN 1879-1778
Grant CEP: GA MŠMT LQ1602; GA MŠMT LD15105
Institucionální podpora: RVO:68145535
Klíčová slova: two-level grids * approximate Schur complement inverse * low-rank correction * parallelizable methods
Obor OECD: Applied mathematics
Impakt faktor: 1.883, rok: 2018
Web výsledku:
https://www.sciencedirect.com/science/article/pii/S0377042717304582
DOI: https://doi.org/10.1016/j.cam.2017.09.027
As an alternative to basic two-level and multilevel iteration preconditioners for elliptic partial differential equations, it is shown that low-rank approximations, based on approximate eigenvectors to the largest eigenvalues of the inverse two-level Schur complement matrix, can give arbitrarily accurate preconditioners that hold uniformly with respect to mesh sizes. The methods are particularly efficient for problems with multiple right hand sides.
Trvalý link: http://hdl.handle.net/11104/0288379
Název souboru Staženo Velikost Komentář Verze Přístup UGN_0495392.pdf 10 1.4 MB Jiná vyžádat
Počet záznamů: 1