Počet záznamů: 1  

Coupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent

  1. 1.
    SYSNO ASEP0478161
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevCoupled Valence-Bond State Molecular Dynamics Description of an Enzyme-Catalyzed Reaction in a Non-Aqueous Organic Solvent
    Tvůrce(i) Duboué-Dijon, Elise (UOCHB-X) ORCID
    Pluhařová, E. (FR)
    Domin, D. (FR)
    Sen, K. (FR)
    Fogarty, A. C. (FR)
    Chéron, N. (FR)
    Laage, D. (FR)
    Zdroj.dok.Journal of Physical Chemistry B. - : American Chemical Society - ISSN 1520-6106
    Roč. 121, č. 29 (2017), s. 7027-7041
    Poč.str.15 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovafree energy calculations ; purine nucleoside phosphorylase ; ab initio calculations
    Vědní obor RIVCF - Fyzikální chemie a teoretická chemie
    Obor OECDPhysical chemistry
    Institucionální podporaUOCHB-X - RVO:61388963
    UT WOS000406726700005
    EID SCOPUS85026553265
    DOI10.1021/acs.jpcb.7b03102
    AnotaceEnzymes are widely used in nonaqueous solvents to catalyze non-natural reactions. While experimental measurements showed that the solvent nature has a strong effect on the reaction kinetics, the molecular details of the catalytic mechanism in nonaqueous solvents have remained largely elusive. Here we study the transesterification reaction catalyzed by the paradigm subtilisin Carlsberg serine protease in an organic apolar solvent. The rate-limiting acylation step involves a proton transfer between active-site residues and the nucleophilic attack of the substrate to form a tetrahedral intermediate. We design the first coupled valence-bond state model that simultaneously describes both reactions in the enzymatic active site. We develop a new systematic procedure to parametrize this model on high-level ab initio QM/MM free energy calculations that account for the molecular details of the active site and for both substrate and protein conformational fluctuations. Our calculations show that the reaction energy barrier changes dramatically with the solvent and protein conformational fluctuations. We find that the mechanism of the tetrahedral intermediate formation during the acylation step is similar to that determined under aqueous conditions, and that the proton transfer, and nucleophilic attack reactions occur concertedly. We identify the reaction coordinate to be mostly due to the rearrangement of some residual water molecules close to the active site.
    PracovištěÚstav organické chemie a biochemie
    Kontaktasep@uochb.cas.cz ; Kateřina Šperková, Tel.: 232 002 584 ; Jana Procházková, Tel.: 220 183 418
    Rok sběru2018
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.