Počet záznamů: 1  

Release of Halide Ions from the Buried Active Site of the Haloalkane Dehalogenase LinB Revealed by Stopped-Flow Fluorescence Analysis and Free Energy Calculations

  1. 1.
    SYSNO ASEP0421950
    Druh ASEPJ - Článek v odborném periodiku
    Zařazení RIVJ - Článek v odborném periodiku
    Poddruh JČlánek ve WOS
    NázevRelease of Halide Ions from the Buried Active Site of the Haloalkane Dehalogenase LinB Revealed by Stopped-Flow Fluorescence Analysis and Free Energy Calculations
    Tvůrce(i) Hladílková, Jana (UOCHB-X) RID
    Prokop, Z. (CZ)
    Chaloupková, R. (CZ)
    Damborský, J. (CZ)
    Jungwirth, Pavel (UOCHB-X) RID, ORCID
    Celkový počet autorů5
    Zdroj.dok.Journal of Physical Chemistry B. - : American Chemical Society - ISSN 1520-6106
    Roč. 117, č. 46 (2013), s. 14329-14335
    Poč.str.7 s.
    Jazyk dok.eng - angličtina
    Země vyd.US - Spojené státy americké
    Klíč. slovaaccess tunnel ; buried active site ; catalytic activity ; enzyme mechanism ; haloalkane dehalogenase ; halide ions
    Vědní obor RIVCF - Fyzikální chemie a teoretická chemie
    CEPGBP208/12/G016 GA ČR - Grantová agentura ČR
    Institucionální podporaUOCHB-X - RVO:61388963
    UT WOS000327557700015
    EID SCOPUS84888618153
    DOI10.1021/jp409040u
    AnotaceRelease of halide ions is an essential step of the catalytic cycle of haloalkane dehalogenases. Here we describe experimentally and computationally the process of release of a halide anion from the buried active site of the haloalkane dehalogenase LinB. Using stopped-flow fluorescence analysis and umbrella sampling free energy calculations, we show that the anion binding is ion-specific and follows the ordering I-_(-)> Br- > Cl- .We also address the issue of the protonation state of the catalytic His272 residue and its effect on the process of halide release. While deprotonation of His272 increases binding of anions in the access tunnel, we show that the anionic ordering does not change with the switch of the protonation state. We also demonstrate that a sodium cation could relatively easily enter the active site, provided the His272 residue is singly protonated, and replace thus the missing proton. In contrast, Na+ is strongly repelled from the active site containing the doubly protonated His272 residue. Our study contributes toward understanding of the reaction mechanism of haloalkane dehalogenase enzyme family. Determination of the protonation state of the catalytic histidine throughout the catalytic cycle remains a challenge for future studies.
    PracovištěÚstav organické chemie a biochemie
    Kontaktasep@uochb.cas.cz ; Kateřina Šperková, Tel.: 232 002 584 ; Jana Procházková, Tel.: 220 183 418
    Rok sběru2014
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.