Počet záznamů: 1
Combinatorial differential geometry and ideal Bianchi-Ricci identities
- 1.0362692 - MÚ 2012 RIV DE eng J - Článek v odborném periodiku
Janyška, J. - Markl, Martin
Combinatorial differential geometry and ideal Bianchi-Ricci identities.
Advances in Geometry. Roč. 11, č. 3 (2011), s. 509-540. ISSN 1615-715X. E-ISSN 1615-7168
Grant CEP: GA ČR GA201/08/0397
Výzkumný záměr: CEZ:AV0Z10190503
Klíčová slova: Natural operator * linear connection * reduction theorem
Kód oboru RIV: BA - Obecná matematika
Impakt faktor: 0.338, rok: 2011
Web výsledku:
http://www.degruyter.com/view/j/advg.2011.11.issue-3/advgeom.2011.017/advgeom.2011.017.xml
DOI: https://doi.org/10.1515/ADVGEOM.2011.017
We apply the graph complex approach of [8] to vector fields depending naturally on a set of vector fields and a linear symmetric connection. We characterize all possible systems of generators for such vector-field valued operators including the classical ones given by normal tensors and covariant derivatives. We also describe the size of the space of such operators and prove the existence of an 'ideal' basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi-Ricci identities without the correction terms. The proofs given in this paper combine the classical methods of normal coordinates with the graph complex method.
Trvalý link: http://hdl.handle.net/11104/0198945
Název souboru Staženo Velikost Komentář Verze Přístup Markl1.pdf 1 402.2 KB Vydavatelský postprint vyžádat
Počet záznamů: 1