- Electromagnetic Excitation for Blade Vibration Analysis in Static Con…
Počet záznamů: 1  

Electromagnetic Excitation for Blade Vibration Analysis in Static Conditions: Theoretical Insights and Experimental Evaluation

  1. 1.
    0600252 - ÚT 2025 RIV US eng J - Článek v odborném periodiku
    Mekhalfia, Mohammed Lamine - Procházka, Pavel - Šmíd, R. - Bonello, P. - Russhard, P. - Maturkanič, Dušan - Mohamed, M.E. - Tchawou Tchuisseu, Eder Batista
    Electromagnetic Excitation for Blade Vibration Analysis in Static Conditions: Theoretical Insights and Experimental Evaluation.
    IEEE Transactions on Instrumentation and Measurement. Roč. 73, 2024-11-27 (2024), č. článku 6011008. ISSN 0018-9456. E-ISSN 1557-9662
    Grant ostatní: AV ČR(CZ) StrategieAV21/27
    Program: StrategieAV
    Institucionální podpora: RVO:61388998
    Klíčová slova: aero-compressor blade * magnetic excitation * static blade * vibration parameters
    Obor OECD: Mechanical engineering
    Impakt faktor: 5.6, rok: 2023 ; AIS: 1.021, rok: 2023
    Způsob publikování: Omezený přístup
    Web výsledku:
    https://ieeexplore.ieee.org/document/10740953DOI: https://doi.org/10.1109/TIM.2024.3488153

    Blade vibration testing is crucial for understanding the dynamic behavior of rotating machinery. This paper presents a theoretical analysis and experimental validation of electromagnetic excitation for blade vibration testing in static conditions. The study focuses on investigating the effect of electromagnets on static blades to establish a theoretical foundation. The Timoshenko beam theory is utilized to analyze the vibration parameters, including amplitude and frequency, while considering associated uncertainties. The theoretical analysis is complemented by numerical modeling using the finite element method and experimental measurements employing Laser Doppler Vibrometry (LDV). The results demonstrate the effectiveness of electromagnetic excitation in generating controlled vibrations in static blades. These findings provide valuable insights and serve as a basis for subsequent investigations into the behavior of blades during rotation. The mathematical model’s frequency estimation error was approximately 4% compared to numerical results, and the numerical amplitude results differed by 6.4% from the experimental measurements. These contributions enhance the understanding and design of blade vibration monitoring systems in rotating machinery and provide valuable information on the blade’s dynamic parameters for the calibration of blade tip timing systems.
    Trvalý link: https://hdl.handle.net/11104/0357960
     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.