Počet záznamů: 1
Design of Zn-Binding Peptide(s) from Protein Fragments
- 1.0619174 - ÚOCHB 2026 RIV US eng J - Článek v odborném periodiku
Kormaník, Ján Michael - Herman, Daniel - Andris, Erik - Culka, Martin - Gutten, Ondrej - Kožíšek, Milan - Bednárová, Lucie - Srb, Pavel - Veverka, Václav - Rulíšek, Lubomír
Design of Zn-Binding Peptide(s) from Protein Fragments.
Chembiochem. Roč. 26, č. 7 (2025), č. článku e202401014. ISSN 1439-4227. E-ISSN 1439-7633
Grant CEP: GA ČR(CZ) GA23-05940S
Výzkumná infrastruktura: e-INFRA CZ II - 90254
Institucionální podpora: RVO:61388963
Klíčová slova: zinc(II) * metal-binding peptide * computer design * isothermal calorimetry * NMR * QM modeling
Impakt faktor: 2.6, rok: 2023 ; AIS: 0.736, rok: 2023
Způsob publikování: Open access
Web výsledku:
https://doi.org/10.1002/cbic.202401014DOI: https://doi.org/10.1002/cbic.202401014
We designed a minimalistic zinc(II)-binding peptide featuring the Cys(2)His(2) zinc-finger motif. To this aim, several tens of thousands of (His/Cys)-X-n-(His/Cys) protein fragments (n=2-20) were first extracted from the 3D protein structures deposited in Protein Data Bank (PDB). Based on geometrical constraints positioning two Cys (C) and two His (H) side chains at the vertices of a tetrahedron, approximately 22 000 sequences of the (H/C)-X-i-(H/C)-X-j-(H/C)-X-k-(H/C) type, satisfying Nmetal-binding H=Nmetal-binding C=2, were processed. Several other criteria, such as the secondary structure content and predicted fold stability, were then used to select the best candidates. To prove the viability of the computational design experimentally, three peptides were synthesized and subjected to isothermal calorimetry (ITC) measurements to determine the binding constants with Zn2+, including the entropy and enthalpy terms. For the strongest Zn2+ ions binding peptide, P1, the dissociation constant was shown to be in the nanomolar range (K-D=similar to 220 nM, corresponding to Delta G(bind)=-9.1 kcal mol(-1)). In addition, ITC showed that the [P1 : Zn2+] complex forms in 1 : 1 stoichiometry and two protons are released upon binding, which suggests that the zinc coordination involves both cysteines. NMR experiments also indicated that the structure of the [P1 : Zn2+] complex might be quite similar to the computationally predicted one. In summary, our proof-of-principle study highlights the usefulness of our computational protocol for designing novel metal-binding peptides.
Trvalý link: https://hdl.handle.net/11104/0365914Název souboru Staženo Velikost Komentář Verze Přístup 10.1002cbic.202401014.pdf 2 4.2 MB Vydavatelský postprint povolen
Počet záznamů: 1