Počet záznamů: 1  

Optimizing printability and mechanical properties of poly(3-hydroxybutyrate) biocomposite blends and their biological response to Saos-2 cells

  1. 1.
    0617182 - ÚEM 2026 RIV SG eng J - Článek v odborném periodiku
    Krobot, Š. - Menčík, P. - Chaloupková, K. - Bočkaj, J. - Vach Agócsová, S. - Klusáček Rampichová, Michala - Hedvičáková, Věra - Alexy, P. - Přikryl, R. - Melcová, V.
    Optimizing printability and mechanical properties of poly(3-hydroxybutyrate) biocomposite blends and their biological response to Saos-2 cells.
    International Journal of Bioprinting. Roč. 11, č. 1 (2025), s. 400-417. ISSN 2424-7723. E-ISSN 2424-8002
    Grant CEP: GA MŠMT(CZ) EH22_008/0004562
    Institucionální podpora: RVO:68378041
    Klíčová slova: 3D printing * design of experiment * fused deposition modeling * Poly(3-hydroxybutyrate) * Polylactide * printability * scaffold
    Obor OECD: Biomaterials (as related to medical implants, devices, sensors)
    Impakt faktor: 6.8, rok: 2023 ; AIS: 0.894, rok: 2023
    Způsob publikování: Open access
    Web výsledku:
    https://accscience.com/journal/IJB/articles/online_first/4158DOI: https://doi.org/10.36922/ijb.5175

    Bone tissue engineering requires scaffolds with three-dimensional (3D) structures that facilitate vascularization and new tissue growth. 3D printing, especially through fused deposition modeling (FDM), has emerged as an effective method for creating complex structures with high reproducibility. Early research in this area demonstrated the potential of poly(ε-caprolactone) (PCL) and poly(L-lactide) (PLLA) scaffolds for bone regeneration. Recently, polylactide (PLA) and polyhydroxyalkanoates (PHAs) have garnered attention for their biocompatibility and ability to support cell proliferation. Among PHAs, poly(3-hydroxybutyrate) (PHB) shows promise due to its intrinsic biocompatibility and resorbability, making it a candidate for FDM-based scaffold fabrication. In the presented study, we aim to develop and optimize a biocompatible PHB-based composite material for bone tissue engineering, incorporating PLA, hydroxyapatite, and the plasticizer Syncroflex 3114 to enhance mechanical properties and printability. This composite was processed into filaments for 3D printing and characterized through thermal, mechanical, and biological evaluations. Using a design of experiment approach, we investigated factors such as temperature performance, warping, degradation, and strength to determine the optimal composition for use in tissue engineering. Four optimal mixture compositions fulfilling the optimization criteria of having the most suitable properties for bone tissue engineering, namely the best printability and maximum mechanical properties, were obtained. The mixtures were optimized specifically for minimum warping coefficient (0.5), maximum flexural strength (66.9 MPa), maximum compression modulus (2.4 GPa), and maximum compression modulus (2.3 GPa) with a warping coefficient of no more than 1 at the same time. In conclusion, the study shows a new possible way to effectively develop and test 3D-printed PHB-based scaffolds with specifically optimized material properties.
    Trvalý link: https://hdl.handle.net/11104/0364137
    Vědecká data: Zenodo
     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0617182.pdf12.1 MBCC BY 4.0Vydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.