Počet záznamů: 1  

The dispersion-strengthening effect of TiN evoked by in situ nitridation of NiCu-based Alloy 400 during gas atomization for laser powder bed fusion

  1. 1.
    0581854 - ÚFM 2025 RIV CH eng J - Článek v odborném periodiku
    Roth, J.-P. - Šulák, Ivo - Chlup, Zdeněk - Fischer-Bühner, J. - Krupp, U. - Jahns, K.
    The dispersion-strengthening effect of TiN evoked by in situ nitridation of NiCu-based Alloy 400 during gas atomization for laser powder bed fusion.
    Materials Science and Engineering A Structural Materials Properties Microstructure and Processing. Roč. 893, Feb (2024), č. článku 146129. ISSN 0921-5093. E-ISSN 1873-4936
    GRANT EU: European Commission(XE) 958192 - HORIZON 2020
    Institucionální podpora: RVO:68081723
    Klíčová slova: Alloy 400 * In situ gas atomization * Laser powder bed fusion * Internal nitridation * TiN nanoparticle * Dispersion strengthening
    Obor OECD: Materials engineering
    Impakt faktor: 6.4, rok: 2022
    Způsob publikování: Open access
    https://www.sciencedirect.com/science/article/pii/S0921509324000601?via%3Dihub

    Alloy 400 is a widely used material being known for its excellent corrosive resistance. Within the chemical industry and in contrast to conventional manufacturing processes, Laser Powder Bed Fusion (LPBF) of Alloy 400 opens up for functional components that withstand harsh environments. On the basis of a holistic process route, the present work focusses on modifying the chemical composition of the base material with Titanium in order to allow the formation of TiN nanoparticles during powder production and LPBF, respectively, as well as documenting their influence on the mechanical properties. Parameter optimization for gas atomization and LPBF is carried out and the microstructure of both powders and parts is examined. It was found that besides Cu segregations on grain boundaries and dislocation formation on cell walls, TiN successfully formed in both powders and parts. The Ti-enriched parts resulted in enhanced mechanical properties in terms of hardness, tensile and creep due to these homogeneously distributed dispersoids. Hence, nanoparticle integration proved to be feasible and effective for the present alloy system.
    Trvalý link: https://hdl.handle.net/11104/0352672

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.