Počet záznamů: 1  

Elevated CO2 concentration alleviates the negative effect of vapor pressure deficit and soil drought on juvenile poplar growth

  1. 1.
    0579586 - ÚVGZ 2025 RIV US eng J - Článek v odborném periodiku
    Orság, Matěj - Berhongaray, G. - Fischer, Milan - Klem, Karel - Ceulemans, R. - King, J. S. - Hlaváčová, Marcela
    Elevated CO2 concentration alleviates the negative effect of vapor pressure deficit and soil drought on juvenile poplar growth.
    Global Change Biology Bioenergy. ISSN 1757-1693. E-ISSN 1757-1707
    Grant CEP: GA MŠMT(CZ) EH22_008/0004635
    Výzkumná infrastruktura: CzeCOS IV - 90248
    Institucionální podpora: RVO:86652079
    Klíčová slova: short-rotation woody coppic, , isohydric species, elevated atmospheric co2, climate change impacts * juvenile hybrid poplars * growth chamber experiment * atmospheric drought * vapor pressure deficit * isohydric species * elevated atmospheric co2 * climate change impacts
    Obor OECD: Forestry
    Způsob publikování: Open access

    The performance of short-rotation woody coppice is strongly influenced by the establishment success during the first months after planting. Future climates warmer due to elevated atmospheric CO2 (eCO2) will cause more soil and atmospheric droughts through elevated vapor pressure deficit (eVPD). Therefore, this growth chamber experiment investigated the interacting effects of eVPD, eCO2 and soil drought on the performance of juvenile hybrid poplars grown under increased air temperature. Atmospheric drought significantly affected leaf area, roots biomass, leaf net assimilation (Anet), and stomatal conductance (gs), but stem biomass only marginally. Interactions of eCO2×soil drought affected only physiological variables, whereas interactions eVPD×eCO2×soil drought only leaf area and root biomass. Soil drought and eCO2 both individually significantly affected stem and root biomass, leaf area, and Anet. The individual effect of atmospheric drought reduced the stem-, root biomass, leaf area, and proportion of roots by -9%, -20%, -21%, and -6%, soil drought by -39%, -55%, -40%, and -14%, whereas eCO2 increased them all by 24%, 47%, 14%, and 6%, respectively. Soil drought reduced Anet and gs by -76% and -84%, eVPD by -15% and -26% and eCO2 increased both by 148% and 27%. Although soil drought is likely to be a major limiting factor, atmospheric drought will not be a significant additional threat to the establishment of SRWC plantations under future conditions of climate change, at least when using genetic material with what appears to be rather anisohydric hydraulic strategy, such as the clone J-105 in the juvenile phase.
    Trvalý link: https://hdl.handle.net/11104/0348402

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Orsag_et_al_2023_GCBB.pdf10797.8 KBAutorský preprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.