Počet záznamů: 1  

Numerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB

  1. 1.
    0579519 - ÚT 2024 RIV CZ eng C - Konferenční příspěvek (zahraniční konf.)
    Moskovka, Alexej - Frost, Miroslav - Valdman, Jan
    Numerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB.
    Computational mechanics 2023. Proceedings of computational mechanics 2023. Plzeň: University of West Bohemia, 2023 - (Adámek, V.; Jonášová, A.; Plánička, S.), s. 130-132. ISBN 978-80-261-1177-1.
    [Computational mechanics 2023 /38./. Srní (CZ), 23.10.2023-25.10.2023]
    Grant CEP: GA ČR(CZ) GA22-20181S; GA ČR GF21-06569K
    Institucionální podpora: RVO:61388998 ; RVO:67985556
    Klíčová slova: hp-FEM * energy functionals * numerical minimization
    Obor OECD: Applied mathematics; Pure mathematics (UTIA-B)
    https://compmech.kme.zcu.cz/download/proceedings/CM2023_Conference_Proceedings.pdf

    Many processes in mechanics and thermodynamics can be formulated as a minimization of a particular energy functional. The finite element method can be used for an approximation of such functionals in a finite-dimensional subspace. Consequently, the numerical minimization methods (such as quasi-Newton and trust region) can be used to find a minimum of the functional. Vectorization techniques used for the evaluation of the energy together with the assembly of discrete energy gradient and Hessian sparsity are crucial for evaluation times. A particular model simulating the deformation of a Neo-Hookean solid body is solved in this contribution by minimizing the corresponding energy functional. We implement both P1 and rectangular hp-finite elements and compare their efficiency with respect to degrees of freedom and evaluation times.
    Trvalý link: https://hdl.handle.net/11104/0349460

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.