Počet záznamů: 1  

Fully parallel solver for particle-resolved direct numerical simulation of flows laden with arbitrarily-shaped particles

  1. 1.
    0579224 - ÚT 2024 SK eng C - Konferenční příspěvek (zahraniční konf.)
    Studeník, Ondřej - Kotouč Šourek, M. - Isoz, Martin - Kočí, P.
    Fully parallel solver for particle-resolved direct numerical simulation of flows laden with arbitrarily-shaped particles.
    PROCEEDINGS 49th International Conference of the Slovak Society of Chemical Engineering SSCHE 2023. Bratislava: Faculty of Chemical and Food Technology STU in Bratislava, 2023 - (Mihaľ, M.; Ivan Červeňanský, I.), s. 49-56. ISBN 978-808208-101-8.
    [International conference of Slovak Society of Chemical Engineering – SSCHE 2023 /49./. Tatranské Matliare (SK), 15.05.2023-18.05.2023]
    Institucionální podpora: RVO:61388998
    Klíčová slova: HFDIB * CFD * DEM * MPI * OpenFOAM
    Obor OECD: Applied mathematics
    https://www.sschi.sk/en/event/ssche2023/

    The omnipresence of processes containing solids dispersed in the liquid phase in nature and industry creates a demand for fully resolved models that allow for detailed analysis and optimisation of these processes. A well-established approach to providing such models is a coupling of computational fluid dynamics (CFD) and discrete element method (DEM) via the variant of an immersed boundary method. The resulting CFD-DEM solver allows for direct numerical simulations of particle-laden flows, considering both particle-fluid and particle-particle interactions, due to the complexity of the collision dynamics between arbitrarily-shaped solids, the standard approach is replacing the complex shapes with spheres or clusters of spheres, which benefits from well-defined sphere-sphere inter-actions. However, this approximation is insufficient for describing coarse-grain slurries, e.g. catalyst deposition via washcoating. Therefore, in our in-house developed CFD-DEM solver, we employ a variant of the softDEM approach, characterising particle collisions by the overlap volume to allow the use of particles with a complex surface. The evaluation of the overlap volume is further optimised using the virtual mesh algorithm. In this work, we focus on further extending the capabilities of our solver to simulate processes with a high number of particle collisions, e.g. sedimentation or fluidisation. We shall introduce the parallelisation of the contact treatment in the context of the message-passing interface (MPI) approach imposed by the CFD method. Furthermore, we shall
    demonstrate a significant increase in computational efficiency in proof-of-concept simulations with hundreds of particles.
    Trvalý link: https://hdl.handle.net/11104/0349052

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.