Počet záznamů: 1  

Effects on cell cycle progression and cytoskeleton organization of five Bothrops spp. venoms in cell culture-based assays

  1. 1.
    0578359 - ÚMG 2024 RIV NL eng J - Článek v odborném periodiku
    Takayasu, B. S. - Rodrigues, S. S. - Trufen, Carlos Eduardo Madureira - Machado-Santelli, G. M. - Onuki, J.
    Effects on cell cycle progression and cytoskeleton organization of five Bothrops spp. venoms in cell culture-based assays.
    Heliyon. Roč. 9, č. 7 (2023), č. článku e18317. ISSN 2405-8440. E-ISSN 2405-8440
    Institucionální podpora: RVO:68378050
    Klíčová slova: c-type lectin * snake-venom * phospholipase a(2) * small gtpases * bothrops-jararacussu * toxic activities * in-vitro * adhesion * damage * metalloprotease * Bothrops * Venom * Cell culture * Cytotoxicity * Cytoskeleton * Cell cycle * 3R principle
    Obor OECD: Biochemistry and molecular biology
    Impakt faktor: 4, rok: 2022
    Způsob publikování: Open access
    https://www.sciencedirect.com/science/article/pii/S2405844023055251?via%3Dihub

    Snake envenomation is a neglected tropical disease. In Brazil, the Bothrops genus is responsible for about 86% of snakebite accidents. Despite extensive evidence of the cytotoxicity of snake venoms, the cellular and molecular mechanisms involved are not fully understood, especially regarding the effects on cell cycle progression and cytoskeleton organization. Traditionally, the effectiveness and quality control tests of venoms and antivenoms are assessed by in vivo assays. Despite this, there is a rising effort to develop surrogate in vitro models according to the 3R principle (Replacement, Reduction, and Refinement). In this study, we treated rat liver cells (BRL-3A) with venoms from five Bothrops species (B. jararaca, B. jararacussu, B. moojeni, B. alternatus, and B. neuwiedi) and analyzed cell viability and IC50 by MTT assay, cell cycle phases distribution by flow cytometry, and morphology and cytoskeleton alterations by immunofluorescence. In addition, we evaluated the correlation between IC50 and the enzymatic and biological activities of each venom. Our results indicated that Bothrops spp. venoms decreased the cell viability of rat liver BRL-3A cells. The rank order of potency was B. jararacussu > B. moojeni > B. alternatus > B. jararaca > B. neuwiedi. The mechanisms of cytotoxicity were related to microtubules and actin network disruption, but not to cell cycle arrest. No clear correlation was found between the IC50 and retrieved literature data of in vitro enzymatic and in vivo biological activities. This work contributed to understanding cellular and molecular mechanisms underlying the Bothrops spp. venom cytotoxicity, which can help to improve envenomation treatment, as well as disclose potential therapeutic properties of snake venoms.
    Trvalý link: https://hdl.handle.net/11104/0347356

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.