Počet záznamů: 1
Zig-zag-matrix algebras and solvable quasi-Hermitian quantum models
- 1.0574841 - ÚJF 2024 RIV GB eng J - Článek v odborném periodiku
Znojil, Miloslav
Zig-zag-matrix algebras and solvable quasi-Hermitian quantum models.
Journal of Physics A-Mathematical and Theoretical. Roč. 56, č. 33 (2023), č. článku 335301. ISSN 1751-8113. E-ISSN 1751-8121
Institucionální podpora: RVO:61389005
Klíčová slova: non-Hermitian quantum mechanics of unitary systems * a zig-zag-matrix class of N-state solvable models * closed formulae for wave functions * closed formula for general physical inner-product metric
Obor OECD: Pure mathematics
Impakt faktor: 2, rok: 2023 ; AIS: 0.713, rok: 2023
Způsob publikování: Open access
Web výsledku:
https://doi.org/10.1088/1751-8121/ace8d5DOI: https://doi.org/10.1088/1751-8121/ace8d5
In quantum mechanics of unitary systems using non-Hermitian (or, more precisely, Theta-quasi-Hermitian) Hamiltonians H such that H(SIC) Theta = Theta H, the exactly solvable M-level bound-state models with arbitrary M <=infinity are rare. A new class of such models is proposed here, therefore. Its exact algebraic solvability (involving not only the closed formulae for wave functions but also the explicit description of all of the eligible metrics Theta) was achieved due to an extremely sparse (viz., just (2M-1)- parametric) but still nontrivial 'zig-zag-matrix' choice of the form of H.
Trvalý link: https://hdl.handle.net/11104/0344776Název souboru Staženo Velikost Komentář Verze Přístup 0574841 .pdf 0 301.3 KB CC licence Vydavatelský postprint povolen
Počet záznamů: 1