Počet záznamů: 1  

TAMM: Tensor algebra for many-body methods

  1. 1.
    0573656 - ÚFCH JH 2024 RIV US eng J - Článek v odborném periodiku
    Mutlu, E. - Panyala, A. - Gawande, N. - Bagusetty, A. - Glabe, J. - Kim, J. - Kowalski, K. - Bauman, N. P. - Peng, B. - Pathak, H. - Brabec, Jiří - Krishnamoorthy, S.
    TAMM: Tensor algebra for many-body methods.
    Journal of Chemical Physics. Roč. 159, č. 2 (2023), č. článku 024801. ISSN 0021-9606. E-ISSN 1089-7690
    Institucionální podpora: RVO:61388955
    Klíčová slova: tensor algebra operations * computational chemistry * Tensor algebra for many-body methods
    Obor OECD: Physical chemistry
    Impakt faktor: 4.4, rok: 2022
    Způsob publikování: Open access

    Tensor algebra operations such as contractions in computational chemistry consume a significant fraction of the computing time on large-scale computing platforms. The widespread use of tensor contractions between large multi-dimensional tensors in describing electronic structure theory has motivated the development of multiple tensor algebra frameworks targeting heterogeneous computing platforms. In this paper, we present Tensor Algebra for Many-body Methods (TAMM), a framework for productive and performance-portable development of scalable computational chemistry methods. TAMM decouples the specification of the computation from the execution of these operations on available high-performance computing systems. With this design choice, the scientific application developers (domain scientists) can focus on the algorithmic requirements using the tensor algebra interface provided by TAMM, whereas high-performance computing developers can direct their attention to various optimizations on the underlying constructs, such as efficient data distribution, optimized scheduling algorithms, and efficient use of intra-node resources (e.g., graphics processing units). The modular structure of TAMM allows it to support different hardware architectures and incorporate new algorithmic advances. We describe the TAMM framework and our approach to the sustainable development of scalable ground- and excited-state electronic structure methods. We present case studies highlighting the ease of use, including the performance and productivity gains compared to other frameworks.

    Trvalý link: https://hdl.handle.net/11104/0344045

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0573656.pdf06.1 MBopen accessVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.