Počet záznamů: 1  

Reduction of fossil CO.sub.2./sub. emissions of engine fuels by integration of stabilized bio-oil distillation residue to a crude-oil refinery hydrocracking process

  1. 1.
    0572212 - ÚJF 2024 RIV CH eng J - Článek v odborném periodiku
    Shumeiko, B. - Auersvald, M. - Vrtiška, D. - Straka, P. - Šimáček, P. - Světlík, Ivo - Bezergianni, S. - Kubička, D.
    Reduction of fossil CO2 emissions of engine fuels by integration of stabilized bio-oil distillation residue to a crude-oil refinery hydrocracking process.
    Chemical Engineering Journal. Roč. 465, JUN (2023), č. článku 142899. ISSN 1385-8947. E-ISSN 1873-3212
    Grant CEP: GA MŠMT EF16_019/0000728
    Výzkumná infrastruktura: CATPRO III - 90235
    Institucionální podpora: RVO:61389005
    Klíčová slova: Bio-oil * Hydrotreated bio-oil * Co-processing * Hydrocracking * Biogenic carbon
    Obor OECD: Energy and fuels
    Impakt faktor: 15.1, rok: 2022
    Způsob publikování: Omezený přístup
    https://doi.org/10.1016/j.cej.2023.142899

    Utilization of waste lignocellulosic biomass to produce high-quality fuels with renewable carbon content using existing refinery infrastructure is an important step towards carbon neutrality. Direct hydroprocessing of pyrolysis bio-oil to liquid biofuels is technically challenging due to its wide fractional and complex chemical composition that requires harsh reaction conditions associated with extensive biocarbon loss to the gaseous products. We have proposed a novel bio-oil hydroprocessing strategy based on 1) bio-oil hydrotreatment (stabilization), 2) fractionation of the stabilized bio-oil and 3) co-processing of the fractions in appropriate refinery processes. In this work, we focus on the co-processing of the stabilized bio-oil distillation residue (SBDR, b.p. 360+degrees C) with vacuum gas-oil (VGO) in a hydrocracking fixed bed reactor under conventional conditions. This allowed us to maximize biogenic carbon content (92%) in the liquid transportation fuels as confirmed by the distribution of 14C (obtained by Accelerator Mass Spectrometry) into the corresponding fractions. i.e. gases, naphtha, kerosene, diesel and distillation residue. Reduction of the fossil CO2 emission was 3 times higher for the naphtha fraction compared with E10 gasoline, 2.4 times higher for the diesel fraction compared with B7 diesel (7 vol% FAME). Detailed analysis of the products via GC x GC-TOFMS, 13C NMR, and FTIR together with the standardized methods demonstrated that fuel distillates met requirements for conventional fuels with only negligible effect of the SBDR on physicochemical properties of products and catalyst stability. This shows that the co-hydrocracking of SBDR is a suitable process to maximize liquid fuel production with increased biogenic carbon content.
    Trvalý link: https://hdl.handle.net/11104/0342985

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.